The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed...The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed pitch VAWT using NACA0018 airfoil at low wind speed. A moving mesh technique was used to investigate two-dimensional unsteady flow around the same VAWT model with NACA0018 airfoil modified to be flexible at 150 from the main blade axis of the turbine at the trailing edge located about 70 % of the blade chord length using fluent solving Reynolds average Navier-strokes equation. The results obtained from DMST model and the simulation results were then compared. The result shows that the CFD simulation with airfoil modified has shown better performance at low tip speed ratios for the modeled turbine.展开更多
In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to i...In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.展开更多
The performance and annual energy output have to be predicted to maximize the economic benefits from a wind turbine. Mathematically predicting the performance of Darrieus type lift based turbines are challenging due t...The performance and annual energy output have to be predicted to maximize the economic benefits from a wind turbine. Mathematically predicting the performance of Darrieus type lift based turbines are challenging due to the inconsistent angle of attack, blade wake interaction and local induced velocities giving rise to complex flow physics. A reliable and validated mathematical model is therefore essential to optimize the various design parameters prior to manufacture. The objective of the current study is to evaluate widely employed aerodynamic models based on their prediction accuracy, limitations, and computational requirements. Double multiple stream tube models have been discussed in detail and the predictions are experimentally validated through the wind tunnel test of three-bladed H-Darrieus rotor in terms of torque and power coefficient. The possible sources for the deviation between the predicted and measured values have been discussed and concluded with potential solutions.展开更多
The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. A...The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise.展开更多
Infill drilling is now recognized as a viable improved recovery process. However, the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by present techniques. T...Infill drilling is now recognized as a viable improved recovery process. However, the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by present techniques. This paper proposes a hybrid predictive model of stream tube simulation and numerical simulation by using the contemporary theory of fluid flow in porous media. The model calculates the geometries of stream tubes, remaining oil distribution and water cut at different development stages in the near future, and uses a three-dimensional simulation to track fluid movement in each stream tube slice. This will help reservoir engineers to determine the feasibility of infill drilling. This predictive model is used to forecast the degree of control of well pattern, the ultimate incremental recovery of infill wells within an inverted 5-spot case in an oilfield and the economic benefit is also analyzed.展开更多
文摘The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed pitch VAWT using NACA0018 airfoil at low wind speed. A moving mesh technique was used to investigate two-dimensional unsteady flow around the same VAWT model with NACA0018 airfoil modified to be flexible at 150 from the main blade axis of the turbine at the trailing edge located about 70 % of the blade chord length using fluent solving Reynolds average Navier-strokes equation. The results obtained from DMST model and the simulation results were then compared. The result shows that the CFD simulation with airfoil modified has shown better performance at low tip speed ratios for the modeled turbine.
文摘In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.
文摘The performance and annual energy output have to be predicted to maximize the economic benefits from a wind turbine. Mathematically predicting the performance of Darrieus type lift based turbines are challenging due to the inconsistent angle of attack, blade wake interaction and local induced velocities giving rise to complex flow physics. A reliable and validated mathematical model is therefore essential to optimize the various design parameters prior to manufacture. The objective of the current study is to evaluate widely employed aerodynamic models based on their prediction accuracy, limitations, and computational requirements. Double multiple stream tube models have been discussed in detail and the predictions are experimentally validated through the wind tunnel test of three-bladed H-Darrieus rotor in terms of torque and power coefficient. The possible sources for the deviation between the predicted and measured values have been discussed and concluded with potential solutions.
文摘The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise.
文摘Infill drilling is now recognized as a viable improved recovery process. However, the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by present techniques. This paper proposes a hybrid predictive model of stream tube simulation and numerical simulation by using the contemporary theory of fluid flow in porous media. The model calculates the geometries of stream tubes, remaining oil distribution and water cut at different development stages in the near future, and uses a three-dimensional simulation to track fluid movement in each stream tube slice. This will help reservoir engineers to determine the feasibility of infill drilling. This predictive model is used to forecast the degree of control of well pattern, the ultimate incremental recovery of infill wells within an inverted 5-spot case in an oilfield and the economic benefit is also analyzed.