期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Different oxidation routes for lattice oxygen recovery of double-perovskite type oxides LaSrFeCoO6 as oxygen carriers for chemical looping steam methane reforming 被引量:3
1
作者 Kun Zhao Yang Shen +5 位作者 Zhen Huang Fang He Guoqiang Wei Anqing Zheng Haibin Li Zengli Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期501-509,共9页
Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidat... Double-perovskite type oxide LaSrFeCoO(LSFCO) was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Two different oxidation routes,steam-oxidation and steam-air-stepwise-oxidation, were applied to investigate the recovery behaviors of the lattice oxygen in the oxygen carrier. The characterizations of the oxide were determined by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), hydrogen temperature-programmed reduction(H-TPR) and scanning electron microscopy(SEM). The fresh sample LSFCO exhibits a monocrystalline perovskite structure with cubic symmetry and high crystallinity, except for a little impurity phase due to the antisite defect of Fe/Co disorder. The deconvolution distribution of XPS patterns indicated that Co,and Fe are predominantly in an oxidized state(Feand Fe) and(Coand Co), while O 1s exists at three species of lattice oxygen, chemisorbed oxygen and physical adsorbed oxygen. The double perovskite structure and chemical composition recover to the original state after the steam and air oxidation, while the Co ion cannot incorporate into the double perovskite structure and thus form the CoO just via individual steam oxidation. In comparison to the two different oxidation routes, the sample obtained by steam-oxidation exhibits even higher CHconversion, CO and Hselectivity and stronger hydrogen generation capacity. 展开更多
关键词 double-perovskite Chemical looping Lattice oxygen Oxidizing agent Redox
下载PDF
High-brightness red-emitting double-perovskite phosphor Sr_(2)LaTaO_(6):Eu^(3+) with high color purity and thermal stability[Invited] 被引量:1
2
作者 张宗杰 李伟 +1 位作者 马楠 黄小勇 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第3期13-16,共4页
Bright Eu3+-activated double-perovskite Sr2LaTaO6 red-emitting phosphors were successfully synthesized by a high-temperature solid-state method. Under near-ultraviolet excitation at 394 nm, optimal Sr2LaTaO6∶0.2 Eu3+... Bright Eu3+-activated double-perovskite Sr2LaTaO6 red-emitting phosphors were successfully synthesized by a high-temperature solid-state method. Under near-ultraviolet excitation at 394 nm, optimal Sr2LaTaO6∶0.2 Eu3+phosphors emitted high-brightness red light around 613 nm with the International Commission on Illumination chromaticity coordinates(0.650,0.349). Notably, the color purity can reach 92%. Impressively, the favorable thermal stability of the Sr2LaTaO6∶0.2 Eu3+phosphors was characterized by temperature-dependent emission spectra at different temperatures from 303 to 463 K, and the emission intensity at 423 K remained 73% of its value at 303 K. All of the results suggested that the as-prepared Sr2LaTaO6∶0.2 Eu3+phosphors can be used in near-ultraviolet-excitable white light-emitting diodes as a red-emitting color converter. 展开更多
关键词 Sr_(2)LaTaO_(6) Eu^(3+) double-perovskite PHOSPHORS
原文传递
Fabrication and photoluminescence characteristics of novel red-emitting Ba_(2)LuNbO_(6):Eu^(3+)double-perovskite phosphors on near UV WLEDs
3
作者 Haihong Guo Ting Wang +13 位作者 Bitao Liu Wei Gao Liang Xiu Zhenen Cui Hao Zhang Qianrui Ma Shaoqing Wang Ziyang Li Longchao Guo Guilong Yan Siufung Yu Xue Yu Xuhui Xu Jianbei Qiu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第8期1173-1180,共8页
Red emitting phosphors play a significant role in accelerating the improvement of illumination quality for white light emitting diodes(WLEDs).In this work,by using solid-state reaction method,an efficient novel Ba_(2)... Red emitting phosphors play a significant role in accelerating the improvement of illumination quality for white light emitting diodes(WLEDs).In this work,by using solid-state reaction method,an efficient novel Ba_(2)LuNbO_(6):Eu^(3+)phosphor with double-perovskite structure was successfully prepared.Here,a series of Ba_(2)LuNbO_(6):Eu^(3+)red phosphors can be efficiently pumped by the near-ultraviolet(UV)light and then present high-brightness at orange emission(598 nm,~5D_(0)→~7 F_(1))and red emission(610 nm,~5D_(0)→~7 F_(2)).The ratio values of 610 to 598 nm in Ba_(2)LuNbO_(6):Eu^(3+)phosphors exceed 1 when the content of Eu^(3+)is larger than 0.4 mol,because the occupation of Eu^(3+)ions is changed from Lu^(3+)ions with symmetric sites to Ba^(2+)ions with asymmetric sites.Besides,the optimized concentration of Eu^(3+)at the~5D_(0)→~7 F_(2)transitions is obtained when x=1,indicating that there is non-concentration quenching in Ba_(2)LuNbO_(6):Eu^(3+)phosphors.Moreover,the CIE chromaticity coordinates of Ba_(2)LuNbO_(6):Eu^(3+)was calculated to be(0.587,0.361),the color purity was calculated to be 72.26%and internal quenching efficiency(IQE)was measured to be 67%.Finally,the thermal stability of Ba_(2)LuNbO_(6):Eu^(3+)phosphors was also studied.Our work demonstrates that the novel double-perovskite red-emitting Ba_(2)LuNbO_(6):Eu^(3+)phosphors are prospective red emitting elements for WLEDs applications. 展开更多
关键词 Ba_(2)LuNbO_(6):Eu^(3+) phosphors Non-concentration quenching double-perovskite Red emitting Rare earths
原文传递
Preparation and Photocatalytic Properties of LnBaCo<SUB>2</SUB>O<SUB>5+δ</SUB>(Ln = Eu, Gd, and Sm)
4
作者 Bingqian Han Yuxiu Li +3 位作者 Nan Chen Dongyang Deng Xinxin Xing Yude Wang 《Journal of Materials Science and Chemical Engineering》 2015年第4期17-25,共9页
A new type of photocatalytic material, double-perovskite oxides, LnBaCo2O5+δ (Ln = Eu, Gd, and Sm) was synthesized via a conventional solid-state reaction process using Ln2O3, BaCO3 and Co2O3 as raw materials. X-ray ... A new type of photocatalytic material, double-perovskite oxides, LnBaCo2O5+δ (Ln = Eu, Gd, and Sm) was synthesized via a conventional solid-state reaction process using Ln2O3, BaCO3 and Co2O3 as raw materials. X-ray diffraction results show that the crystalline structures are a pure orthorhombic lattice and are consistent with LnBaCo2O5+δ microparticles. The photocatalytic activity of the LnBaCo2O5+δ (Ln = Eu, Gd, and Sm) powders was further demonstrated in the degradation of Congo red (CR) under ultraviolet light irradiation with the dye solution concentration of 25 or 50 mg·L-1. The double-perovskite oxides LnBaCo2O5+δ show a certain photocatalytic activity during the degradation of CR under ultraviolet light, which means that they are one kind of the promising photocatalytic materials for the degradation of the azo dyes. 展开更多
关键词 double-perovskite LnBaCo2O5+δ PHOTOCATALYSIS CONGO Red
下载PDF
层状类钙钛矿多铁性材料研究进展 被引量:4
5
作者 张大龙 陈志伟 +1 位作者 黄伟川 李晓光 《硅酸盐学报》 EI CAS CSCD 北大核心 2017年第12期1707-1720,共14页
多铁性材料的自旋、电荷、轨道、晶格等多重有序存在着复杂的相互作用,且对磁场、电场、光场、应变和温度等多种外界环境敏感,从而表现出一些新奇的物理现象,使其在存储器、传感器、微波等领域中有重要的应用价值。随着对单相多铁材料... 多铁性材料的自旋、电荷、轨道、晶格等多重有序存在着复杂的相互作用,且对磁场、电场、光场、应变和温度等多种外界环境敏感,从而表现出一些新奇的物理现象,使其在存储器、传感器、微波等领域中有重要的应用价值。随着对单相多铁材料研究的深入,人们已从简单钙钛矿结构的多铁性研究转向复杂的层状类钙钛矿体系,其丰富而复杂的结构给人们提供了更广泛的设计和调控空间。介绍并分析了如Double-Perovskite(DP)、Ruddlesden-Popper(RP)、Aurivillius(AU)以及A_nB_nO_(3n+2)系列等层状类钙钛矿多铁性特征的研究进展。人们已发现Bi_2FeCrO_6等DP体系、(1–x)(Ca_ySr_(1–y))_(1.15)Tb_(1.85)Fe_2O_7–xCa_3Ti_2O_7等RP体系、Bi_4NdTi_3Fe_(1–x)Co_xO_(15_–Bi_3NdTi_2Fe_(1–x)Co_xO_(12–δ)等AU体系以及La_6(Ti_(0.67)Fe_(0.33))_6O_(20)层状材料等,均具有室温或近室温多铁性。最后提出了当前面临的问题和对未来的展望。 展开更多
关键词 多铁性 double-perovskite RUDDLESDEN-POPPER AURIVILLIUS
原文传递
Preparation of double perovskite-type oxide LaSrFeCoO_6 for chemical looping steam methane reforming to produce syngas and hydrogen 被引量:6
6
作者 赵坤 沈阳 +5 位作者 何方 黄振 魏国强 郑安庆 李海滨 赵增立 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第10期1032-1041,共10页
Double-perovskite type oxide LaSrFeCoO_6 was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Solid-phase, amorphous alloy, sol-gel and micro-em... Double-perovskite type oxide LaSrFeCoO_6 was used as oxygen carrier for chemical looping steam methane reforming(CL-SMR) due to its unique structure and reactivity. Solid-phase, amorphous alloy, sol-gel and micro-emulsion methods were used to prepare the LaSrFeCoO_6 samples, and the as-prepared samples were characterized by means of X-ray diffraction(XRD), hydrogen temperature-programmed reduction(H_2-TPR), X-ray photoelectron spectroscopy(XPS), Brunauer-Emmett-Teller(BET) surface area. Results showed that the samples made by the four different methods exhibited pure crystalline perovskite structure. The ordered double perovskite LaSrFeCoO_6 was regarded as a regular arrangement of alternating FeO_6 and CoO_6 corner-shared octahedra, with La and Sr cations occupying the voids in between the octahedral. Because the La^(3+) and Sr^(2+) ions in A-site did not take part in reaction, the TPR patterns showed the reductive properties of the B-site metals. The reduction peaks at low temperature revealed the reduction of adsorbed oxygen on surface and combined with the reduction of Co^(3+) to Co^(2+) and to Co^0, while the reduction of Fe^(3+) to Fe^(2+) and the partial reduction of Fe^(2+) to Fe^0 occurred at higher temperatures. From the point of view of the oxygen-donation ability, resistance to carbon formation, as well as hydrogen generation capacity, the sample made by micro-emulsion method exhibited the best reactivity. Its redox reactivity was very stable in ten successive cycles without deactivation. Compared to the single perovskite-type oxides LaFeO_3 and LaCoO_3, the double perovskite LaSrFeCoO_6 exhibited better syngas and hydrogen generation capacity. 展开更多
关键词 double-perovskite CL-SMR micro-emulsion oxygen species redox rare earths
原文传递
Emission-tunable Ba_(2)Y_(1-x)Sc_(x)NbO_(6):Bi^(3+)(0≤x≤1.0)phosphors for white LEDs 被引量:1
7
作者 Zhihua Gao Fengyan Fu +2 位作者 Lili Niu Min Jin Xiaohong Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1819-1826,I0001,共9页
Here,we report a series of Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)(0≤x≤1.0 mol)phosphors by using the traditional high temperature solid-state reaction.To achieve the structural and photoluminescent(PL)information,... Here,we report a series of Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)(0≤x≤1.0 mol)phosphors by using the traditional high temperature solid-state reaction.To achieve the structural and photoluminescent(PL)information,several experimental characterizations and theoretical calculations were carried out,including X-ray diffraction(XRD),Rietveld refinement,UV-visible diffuse reflectance and PL spectra,temperature dependent PL spectra,and density functional theo retical(DFT)calculations.The XRD results show that the Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)samples belong to the double-perovskite phase with a cubic space group of Fm3 m,and the diffraction positions shift toward high diffraction angle when the larger Y^(3+)ions are gradually replaced by the smaller Sc^(3+)ions.In addition,the refined XRD findings show that the Bi^(3+)ions tend to substitute the Y^(3+)and Sc^(3+)sites in the Bi^(3+)-doped Ba_(2)Y_(1-x)Sc_(x)NbO_(6)0<x<1.0 mol)solid solutions.The PL spectra show that the emission positions of the solid solution samples tune from446 to 497 nm with the increase of Sc^(3+) content,which can be attributed to the modification of crystal field strength around Bi^(3+)ions.Moreover,there is energy transfer from the Ba_(2)YNbO_(6)host to Bi^(3+)ions,which is dominated by a resonant type via a dipole-quadrupole(d-q)interaction.The Ba_(2)Y_(0.6)Sc_(0.4)NbO_(6):0.02 molBi^(3+)shows the strongest PL intensity under 365 nm excitation,with the best quantum efficiency(QE)of 68%,and it keeps 60%of the room temperature emission intensity when the temperature increases to 150℃,meaning that the Ba_(2)Y_(0.6)Sc_(0.4)NbO_(6):Bi^(3+)features excellent thermal quenching of luminescence.By combining this optimal sample with a commercial red-emitting Sr_(2)Si_(5)N_(8):Eu^(2+)phosphor,and a commercial 365 nm UV LED chip,a white LED device,with the color temperature(CT)of 3678 K,color rendering index(CRI)of 67.9,and CIE coordinates at(0.371,0.376),is achieved. 展开更多
关键词 Bi^(3+) double-perovskite Tunable emission Energy transfer White LEDs Rare earths
原文传递
Preparation of Sr_2Fe_(1-x)Sc_xMoO_(6-δ) nanopowders and its electrical conductivity 被引量:1
8
作者 葛奔 艾德生 +2 位作者 马景陶 邓长生 林旭平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第7期673-677,共5页
Double-perovskite Sr2Fe1-xScxMoO6-δ (x=0, 0.05, 0.1, 0.2, 0.3, 0.4) powders applied to the cathode of solid oxide electrolysis cells were synthesized by the sol-gel citrate combustion method. Initial powders were c... Double-perovskite Sr2Fe1-xScxMoO6-δ (x=0, 0.05, 0.1, 0.2, 0.3, 0.4) powders applied to the cathode of solid oxide electrolysis cells were synthesized by the sol-gel citrate combustion method. Initial powders were calcined at different temperatures under different atmosphere (air, H2(4 vol.%)/Ar), and the effects of the preparation process on the structure and the morphology of the powders were investigated by thermal analysis (TG/DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and surface area analysis. The electric conductiv-ity of the materials was measured by electrochemical work station using wafers prepared by dry pressing. It was found that the formation of perovskite structure was related to the content of Sc and combustion improver (NH4NO3), pH value, calcining temperature and atmosphere. A single perovskite phase of Sr2Fe1-xScxMoO6-δ could be formed after 3 h calcining in reducing atmosphere of H2 (4 vol.%)/Ar at 1100 oC. The electrical property indicated that, this material had a potential to be used in medium/high temperature solid oxide fuel cells or electrolysis cells. 展开更多
关键词 NANOPOWDERS double-perovskites sol-gel citrate combustion method solid oxide electrolysis cells rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部