The realization of rapid and unidirectional single-file wate^molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a tr...The realization of rapid and unidirectional single-file wate^molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye double- relaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Inde- pendent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Purther, an experimental demon- stration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.展开更多
基金We acknowledge the financial support by the National Natural Science Foundation of China under Grant No. 11222544, the Fok Ying Tung Education Foundation under Grant No. 131008, and the Program for New Century Excellent Talents in University (NCET-12-0121). The computational resources uti- lized in this research were provided by Shanghai Supercomputer Center.
文摘The realization of rapid and unidirectional single-file wate^molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye double- relaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Inde- pendent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Purther, an experimental demon- stration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.