In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO ...In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO problems,and effective solutions for multi-material topology optimization(MMTO)which requires a lot of computing resources are still lacking.Therefore,this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design.The framework employs convolutional neural network(CNN)to construct a surrogate model for solving MMTO,and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any iterations.The performance evaluation results show that the proposed method not only outputs multi-material topologies with clear material boundary but also reduces the calculation cost with high prediction accuracy.Additionally,in order to find a more reasonable modeling method for MMTO,this paper studies the characteristics of surrogate modeling as regression task and classification task.Through the training of 297 models,our findings show that the regression task yields slightly better results than the classification task in most cases.Furthermore,The results indicate that the prediction accuracy is primarily influenced by factors such as the TO problem,material category,and data scale.Conversely,factors such as the domain size and the material property have minimal impact on the accuracy.展开更多
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ...Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.展开更多
Most methods for classifying hyperspectral data only consider the local spatial relation-ship among samples,ignoring the important non-local topological relationship.However,the non-local topological relationship is b...Most methods for classifying hyperspectral data only consider the local spatial relation-ship among samples,ignoring the important non-local topological relationship.However,the non-local topological relationship is better at representing the structure of hyperspectral data.This paper proposes a deep learning model called Topology and semantic information fusion classification network(TSFnet)that incorporates a topology structure and semantic information transmis-sion network to accurately classify traditional Chinese medicine in hyperspectral images.TSFnet uses a convolutional neural network(CNN)to extract features and a graph convolution network(GCN)to capture potential topological relationships among different types of Chinese herbal medicines.The results show that TSFnet outperforms other state-of-the-art deep learning classification algorithms in two different scenarios of herbal medicine datasets.Additionally,the proposed TSFnet model is lightweight and can be easily deployed for mobile herbal medicine classification.展开更多
The massive growth of wireless traffic goes hand in hand with the deployment of advanced radio interfaces as well as network densification. This growth has a direct impact on the radio access architecture, which today...The massive growth of wireless traffic goes hand in hand with the deployment of advanced radio interfaces as well as network densification. This growth has a direct impact on the radio access architecture, which today is moving from centralized to distributed deployments through the use of a large number of access points (APs). This paper verifies the feasibility of deploying multiple APs in series on a single line in a ring topology in a cell-less network. On the one hand, this technique will further improve the communication capacity and flexibility of a Radio-over-Fiber (RoF) based mobile communication system and will reduce its construction cost. And on the other hand, this deployment topology is a solution to achieve a massive cell-free Multiple-Input Multiple-Output (MIMO) architecture and a cost-effective fronthaul solution. First, a passive optical add/drop multiplexer (OADM) is used to extract and add downlink and uplink signals from the remote access points of one kilometer. Then, a deployment model is developed with version 17 Optisystem software. The results obtained showed that the quadrature amplitude modulation (QAM) does not adapt to this multi-carrier transmission to deploy several AP in series on a single line. Thus, the performance degradation increases when the number of APs integrated on the line increases.展开更多
Software-Defined Network architecture offers network virtualization through a hypervisor plane to share the same physical substrate among multiple virtual networks. However, for this hypervisor plane, how to map ...Software-Defined Network architecture offers network virtualization through a hypervisor plane to share the same physical substrate among multiple virtual networks. However, for this hypervisor plane, how to map a virtual network to the physical substrate while guaranteeing the survivability in the event of failures, is extremely important. In this paper, we present an efficient virtual network mapping approach using optimal backup topology to survive a single link failure with less resource consumption. Firstly, according to whether the path splitting is supported by virtual networks, we propose the OBT-I and OBT-II algorithms respectively to generate an optimal backup topology which minimizes the total amount of bandwidth constraints. Secondly, we propose a Virtual Network Mapping algorithm with coordinated Primary and Backup Topology (VNM-PBT) to make the best of the substrate network resource. The simulation experiments show that our proposed approach can reduce the average resource consumption and execution time cost, while improving the request acceptance ratio of VNs.展开更多
A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stabil...A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.展开更多
In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topologic...In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization- based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method.展开更多
Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous rese...Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).展开更多
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks o...All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.展开更多
An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, whi...An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.展开更多
This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering...This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.展开更多
“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information an...“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.展开更多
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t...Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.展开更多
Bitcoin has made an increasing impact on the world's economy and financial order,which attracted extensive attention of researchers and regulators from all over the world.Most previous studies had focused more on ...Bitcoin has made an increasing impact on the world's economy and financial order,which attracted extensive attention of researchers and regulators from all over the world.Most previous studies had focused more on the transaction layer,but less on the network layer.In this paper,we developed BNS(Bitcoin Network Sniffer),which could find and connect nodes in the Bitcoin network,and made a measurement in detail.We collected nearly 4.1 million nodes in 1.5 hours and identified 9,515 reachable nodes.We counted the reachable nodes'properties such as:service type,port number,client version and geographic distribution.In addition,we analyzed the stability of the reachable nodes in depth and found nearly 60%kept stable during 15 days.Finally,we proposed a new approach to infer the Bitcoin network topology by analyzing the Neighbor Addresses of Adjacent Nodes and their timestamps,which had an accuracy over 80%.展开更多
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
The topology control is an effective approach which can improve the quality of wireless sensor network at all sides. Through studying the mechanism of sensor network data transmission, the nature of data transmission ...The topology control is an effective approach which can improve the quality of wireless sensor network at all sides. Through studying the mechanism of sensor network data transmission, the nature of data transmission in wireless sensor network is concluded as a kind of responsibility transmission. By redefining the responsibility and availability of nodes, the strategy for cluster head selection is studied, the responsibility and availability is determined by the combination of the residual energy, location and current flow of nodes. Based on the above, new clustering network topology control algorithm based on responsibility transmission CNTCABRT and hierarchical multi-hop CNTCABRT is presented in this paper, whose algorithm structure is along the famous LEACH algorithm. Experimental result demonstrates its promising performance over the famous LEACH algorithm in the cluster head selection, the size of cluster, the deployment of nodes and the lifetime of nodes, and several innovative conclusions are proposed finally.展开更多
The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-ener...The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.展开更多
Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution ...Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution as a service of the network with lower delay and higher security in comparison with the current IP network. Applying ICN in current IP infrastructure leads to major complexities. One approach to deploy ICN with less complexity is to integrate ICN with Software Defined Networking(SDN). The SDN controller manages the content distribution, caching, and routing based on the users' requests. In this paper, we extend these context by addressing the ICN topology management problem over the SDN network to achieve an improved user experience as well as network performance. In particular, a centralized controller is designed to construct and manage the ICN overlay. Experimental results indicate that this adopted topology management strategy achieves high performance, in terms of low failure in interest satisfaction and reduced download time compared to a plain ICN.展开更多
基金supported in part by National Natural Science Foundation of China under Grant Nos.51675525,52005505,and 62001502Post-Graduate Scientific Research Innovation Project of Hunan Province under Grant No.XJCX2023185.
文摘In recent years,there has been significant research on the application of deep learning(DL)in topology optimization(TO)to accelerate structural design.However,these methods have primarily focused on solving binary TO problems,and effective solutions for multi-material topology optimization(MMTO)which requires a lot of computing resources are still lacking.Therefore,this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design.The framework employs convolutional neural network(CNN)to construct a surrogate model for solving MMTO,and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any iterations.The performance evaluation results show that the proposed method not only outputs multi-material topologies with clear material boundary but also reduces the calculation cost with high prediction accuracy.Additionally,in order to find a more reasonable modeling method for MMTO,this paper studies the characteristics of surrogate modeling as regression task and classification task.Through the training of 297 models,our findings show that the regression task yields slightly better results than the classification task in most cases.Furthermore,The results indicate that the prediction accuracy is primarily influenced by factors such as the TO problem,material category,and data scale.Conversely,factors such as the domain size and the material property have minimal impact on the accuracy.
基金sponsored by the National Natural Science Foundation of China(21905221,21805221)the Suzhou Technological innovation of key industries-research and development of key technologies(SGC2021118)。
文摘Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.
基金supported by the National Natural Science Foundation of China(No.62001023)Beijing Natural Science Foundation(No.JQ20021)。
文摘Most methods for classifying hyperspectral data only consider the local spatial relation-ship among samples,ignoring the important non-local topological relationship.However,the non-local topological relationship is better at representing the structure of hyperspectral data.This paper proposes a deep learning model called Topology and semantic information fusion classification network(TSFnet)that incorporates a topology structure and semantic information transmis-sion network to accurately classify traditional Chinese medicine in hyperspectral images.TSFnet uses a convolutional neural network(CNN)to extract features and a graph convolution network(GCN)to capture potential topological relationships among different types of Chinese herbal medicines.The results show that TSFnet outperforms other state-of-the-art deep learning classification algorithms in two different scenarios of herbal medicine datasets.Additionally,the proposed TSFnet model is lightweight and can be easily deployed for mobile herbal medicine classification.
文摘The massive growth of wireless traffic goes hand in hand with the deployment of advanced radio interfaces as well as network densification. This growth has a direct impact on the radio access architecture, which today is moving from centralized to distributed deployments through the use of a large number of access points (APs). This paper verifies the feasibility of deploying multiple APs in series on a single line in a ring topology in a cell-less network. On the one hand, this technique will further improve the communication capacity and flexibility of a Radio-over-Fiber (RoF) based mobile communication system and will reduce its construction cost. And on the other hand, this deployment topology is a solution to achieve a massive cell-free Multiple-Input Multiple-Output (MIMO) architecture and a cost-effective fronthaul solution. First, a passive optical add/drop multiplexer (OADM) is used to extract and add downlink and uplink signals from the remote access points of one kilometer. Then, a deployment model is developed with version 17 Optisystem software. The results obtained showed that the quadrature amplitude modulation (QAM) does not adapt to this multi-carrier transmission to deploy several AP in series on a single line. Thus, the performance degradation increases when the number of APs integrated on the line increases.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
基金This research was sponsored by the National Basic Research Program (973 program) of China (2012CB315901, 2013C8329104), the National Natural Science Foundation of China (61372121, 61309020), and the National High-Tech Research and Development Program (863 Program) of Chi- na (2011AA01A103, 201 1AA01A101, 2013AA013505).
文摘Software-Defined Network architecture offers network virtualization through a hypervisor plane to share the same physical substrate among multiple virtual networks. However, for this hypervisor plane, how to map a virtual network to the physical substrate while guaranteeing the survivability in the event of failures, is extremely important. In this paper, we present an efficient virtual network mapping approach using optimal backup topology to survive a single link failure with less resource consumption. Firstly, according to whether the path splitting is supported by virtual networks, we propose the OBT-I and OBT-II algorithms respectively to generate an optimal backup topology which minimizes the total amount of bandwidth constraints. Secondly, we propose a Virtual Network Mapping algorithm with coordinated Primary and Backup Topology (VNM-PBT) to make the best of the substrate network resource. The simulation experiments show that our proposed approach can reduce the average resource consumption and execution time cost, while improving the request acceptance ratio of VNs.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.60874091 and 61104103)the Natural Science Fund for Colleges and Universities in Jiangsu Province,China (Grant No.10KJB120001)the Climbing Program of Nanjing University of Posts & Telecommunications,China (Grant Nos.NY210013 and NY210014)
文摘A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.50925727) and the National Natural Science Foundation of China(Grant No.60876022)
文摘In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization- based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method.
基金Supported by the Support Program of the National 12th Five Year-Plan of China(2015BAK25B03)
文摘Accurate short-term traffic flow prediction plays a crucial role in intelligent transportation system (ITS), because it can assist both traffic authorities and individual travelers make better decisions. Previous researches mostly focus on shallow traffic prediction models, which performances were unsatisfying since short-term traffic flow exhibits the characteristics of high nonlinearity, complexity and chaos. Taking the spatial and temporal correlations into consideration, a new traffic flow prediction method is proposed with the basis on the road network topology and gated recurrent unit (GRU). This method can help researchers without professional traffic knowledge extracting generic traffic flow features effectively and efficiently. Experiments are conducted by using real traffic flow data collected from the Caltrans Performance Measurement System (PEMS) database in San Diego and Oakland from June 15, 2017 to September 27, 2017. The results demonstrate that our method outperforms other traditional approaches in terms of mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE) and root mean square error (RMSE).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174034,11135001,11205041,and 11305112)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130282)
文摘All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.
基金the National Natural Science Foundation of China (60532030)
文摘An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.
文摘This paper presents a hierarchical dynamic routing protocol (HDRP) based on the discrete dynamic programming principle. The proposed protocol can adapt to the dynamic and large computer networks (DLCN) with clustering topology. The procedures for realizing routing update and decision are presented in this paper. The proof of correctness and complexity analysis of the protocol are also made. The performance measures of the HDRP including throughput and average message delay are evaluated by using of simulation. The study shows that the HDRP provides a new available approach to the routing decision for DLCN or high speed networks with clustering topology.
文摘“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.
基金This work was supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.
基金supported by National Key Research and Development Program of China (Grant No.2020YFB1006105)
文摘Bitcoin has made an increasing impact on the world's economy and financial order,which attracted extensive attention of researchers and regulators from all over the world.Most previous studies had focused more on the transaction layer,but less on the network layer.In this paper,we developed BNS(Bitcoin Network Sniffer),which could find and connect nodes in the Bitcoin network,and made a measurement in detail.We collected nearly 4.1 million nodes in 1.5 hours and identified 9,515 reachable nodes.We counted the reachable nodes'properties such as:service type,port number,client version and geographic distribution.In addition,we analyzed the stability of the reachable nodes in depth and found nearly 60%kept stable during 15 days.Finally,we proposed a new approach to infer the Bitcoin network topology by analyzing the Neighbor Addresses of Adjacent Nodes and their timestamps,which had an accuracy over 80%.
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.
文摘The topology control is an effective approach which can improve the quality of wireless sensor network at all sides. Through studying the mechanism of sensor network data transmission, the nature of data transmission in wireless sensor network is concluded as a kind of responsibility transmission. By redefining the responsibility and availability of nodes, the strategy for cluster head selection is studied, the responsibility and availability is determined by the combination of the residual energy, location and current flow of nodes. Based on the above, new clustering network topology control algorithm based on responsibility transmission CNTCABRT and hierarchical multi-hop CNTCABRT is presented in this paper, whose algorithm structure is along the famous LEACH algorithm. Experimental result demonstrates its promising performance over the famous LEACH algorithm in the cluster head selection, the size of cluster, the deployment of nodes and the lifetime of nodes, and several innovative conclusions are proposed finally.
基金supported by by National Natural Science Founda-tion of China (No. 60702055)Program for New Century ExcellentTalents in University (NCET-07-0914)the Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ070521)
文摘The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.
文摘Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution as a service of the network with lower delay and higher security in comparison with the current IP network. Applying ICN in current IP infrastructure leads to major complexities. One approach to deploy ICN with less complexity is to integrate ICN with Software Defined Networking(SDN). The SDN controller manages the content distribution, caching, and routing based on the users' requests. In this paper, we extend these context by addressing the ICN topology management problem over the SDN network to achieve an improved user experience as well as network performance. In particular, a centralized controller is designed to construct and manage the ICN overlay. Experimental results indicate that this adopted topology management strategy achieves high performance, in terms of low failure in interest satisfaction and reduced download time compared to a plain ICN.