BACKGROUND In rotator cuff repair surgery,the double-row technique is widely performed.Studies have shown that with increased contact area and pressure between tendon and bone interface,better healing is promoted.AIM ...BACKGROUND In rotator cuff repair surgery,the double-row technique is widely performed.Studies have shown that with increased contact area and pressure between tendon and bone interface,better healing is promoted.AIM To assess the different suture configurations with the double-row technique and how this influences the contact area of the rotator cuff tendon to bone.METHODS This was a controlled laboratory study where identical tears were created in 24 fresh porcine shoulders over a 1.5 cm×2.5 cm infraspinatus insertion footprint.Double-row repair techniques,with 3 to 4-suture anchors in different configurations(2 medial,2 lateral vs 2 medial,1 lateral vs 1 medial,2 lateral),were employed for three control groups.Each group consisted of eight shoulders with identical repair configurations.Footprint contact areas of the repaired tendon against the tuberosity were determined using pressure sensitive Fujifilm placed between the tendon and tuberosity.RESULTS The mean contact area between tendon and insertion footprint from the imprinted Fujifilm was obtained using computer software.The contact area measured from a standard 4-suture anchor double row repair was 75.1±9.3 mm2,whereas areas obtained for the 2 lateral-1 medial and 2 medial-1 lateral anchor configurations were 72.9±5.2 mm2 and 75.0±4.9 mm2 respectively.No statistical significance was noted between the three groups.CONCLUSION In the technique of double-row repair,using a 3-suture anchor configuration may offer a non-inferior alternative to the standard 4-anchor construct in terms of efficacy.This may also result in overall cost reduction and shorter surgical time.展开更多
A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet's eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consi...A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet's eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The solution of differential governing equation of motion is determined by applying the Fourier series method. The behaviors of dynamic load sharing characteristics affected by the system parameters including gear eccentricities error, ring gear's supporting stiffness, planet's bearing stiffness, torsional stiffness of first stage carrier and input rotation rate were investigated qualitatively and systematically, and sun gear radial orbits at first and second stage were explored as well. Some theoretical results are summarized as guidelines for further research and design of double-row planetary gear train at last.展开更多
Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bot...Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.展开更多
Few studies were focused on the load-sharing characteristics of double-row planetary gear(DRPG)systems with bearings.Meanwhile,the supported bearing has an important influence on the transmission characteristics of th...Few studies were focused on the load-sharing characteristics of double-row planetary gear(DRPG)systems with bearings.Meanwhile,the supported bearing has an important influence on the transmission characteristics of the entire system.To overcome this problem,a multi-body dynamic(MBD)model of the DRPG system fully considering the influences of bearing parameters is established.Dynamic loads among contacting gear pairs have been obtained to calculate the load-sharing coefficient(LSC)of the system.The LSC of each gear tooth pair has been compared to study the effect of the supported bearing clearance on the load-sharing characteristics.These methods are based on Hertz contact theory.The liner stiffness and damping are used in the model.The results show that the supported bearing clearance has a greatly effect on the LSC of the DRPG system.Choosing appropriate clearance parameters of supported bearing can help suppress the uneven load distribution of the DRPG system.The results can provide some guidance to find new method to study the LSC and increase the service life of planetary gear systems.展开更多
This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upo...This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upon excavation.The horizontal displacement(δ_(h)),Von Mises stress(δ_(M)),strain(ε),ground surface settlement(δ_(v)),and earth pressure are systematically investigated.Furthermore,the monitoring data of 13 excavation cases supported by double-row piles retaining system are presented and discussed.The experimental results can basically match the numerical results,and the maximumδ_(M),maximum bending moment(M_(max)),maximum horizontal displacement(δ_(hm))of structural members are all less than the tolerance limits.The ground surface settlement model of double-row piles retaining system consists of three zones,i.e.,rebound influence zone,primary influence zone and secondary influence zone.The dhm values are 0.07%–1.42%of the excavation depth(He).The maximum ground surface settlement(δ_(vm))is generally less than dhm.The ratio ofδ_(vm)=δ_(hm)varies between 0.09 and 0.76,with an average value of 0.5.The observed earth pressure on the retained side of front pile(paf)is about 0.53–0.57γH below the excavation surface.Above the excavation surface,p_(af)decreases dramatically when getting closer to the ground surface.展开更多
Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibl...Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibly use a variety of plant landscaping methods to create a richer and more vivid natural landscape,and promote the improvement of the quality of the living environment and the harmonious coexistence between man and nature.展开更多
As a new kind of technology in retaining structures, the characteristics of double-row piles are significantly affected by spatial effects. In this paper, double-row piles as a retaining structure are simulated numeri...As a new kind of technology in retaining structures, the characteristics of double-row piles are significantly affected by spatial effects. In this paper, double-row piles as a retaining structure are simulated numerically in three-dimension by finite element software PLAXIS 3D FOUNDATION. The behavior differences of piles in different positions around the foundation pit are analyzed. By changing the parameters, including the length-width ratio, the excavation depth, the distance between rows and the diameter of piles, the variations of the lateral deformation, the bending moment and the earth pressure around the piles are determined. The reasonable values of parameters and some suggestions with consideration of earth pressure are proposed for the design of double-row piles as a retaining structure. The results show that the lateral deformation and bending moment are the largest in the middle of long side of the foundation pit, which is identified as the most unfavorable position. It is indicated that the earth pressure between rows above pit bottom is close to active earth pressure, while the earth pressure between rows under pit bottom is close to static earth pressure. It is suggested that 1/2-2/3 of pile length, 0.6-1.2 m, 3d-6d, and 2d-2.5d be chosen as embedded depth of piles, diameter of piles, distance between rows, and distance between piles, respectively, where d is the pile diameter.展开更多
Double-row pile(DRP)retaining systems have been widely used in deep excavations in China.Soil between the front and back-row piles(FBP soil)is often improved to decrease the displacement of DRPs in soft soil areas,but...Double-row pile(DRP)retaining systems have been widely used in deep excavations in China.Soil between the front and back-row piles(FBP soil)is often improved to decrease the displacement of DRPs in soft soil areas,but the improvement efficiency has rarely been researched.A large and deep excavation supported by a DRP retaining system is introduced,and the effect of FBP soil improvement is discussed by comparing the finite element analysis and the monitoring results.Then,a parametric study of DRP using the finite element method considering the small strain of soil is conducted to investigate the effect of FBP soil improvement.It was shown that the pile deflection and bending moment decrease when the FBP soil is improved.Moreover,the most efficient way to minimize the pile deflection and bending moment is to improve the FBP soil around the excavation level.The FBP soil improvement 2-4 m below the pile head is not very useful for reducing the pile deflection and can be eliminated when the pile displacement limit is not very strict.展开更多
With the growing demand for energy saving,emission reduction,and green metallurgy,we had designed a new C-H2 smelting reduction reactor.In order to solve the key problem that the heat transfer efficiency from high tem...With the growing demand for energy saving,emission reduction,and green metallurgy,we had designed a new C-H2 smelting reduction reactor.In order to solve the key problem that the heat transfer efficiency from high temperature oxidation zone in upper region to low temperature reduction zone in lower region is low in traditional metallurgical reduction reactor,a water simulation was adopted to optimize the mean residence time and to improve the transmission efficiency within the reactor.According to the modified Froude similarity,a water model experimental reactor with a ratio of 1:1 to the prototype was constructed.In the prototype,the feed port was used to feed preheated ore and flux.In order to simulate the effect of different feeding positions of the tracer on the mixing behavior in the molten pool,four points of tracer feeding position were arranged for a systematic study.At the same time,based on double-row side nozzle with thick slag layer in a C-H2 smelting reduction reactor,nine influencing factors,including relative angle between upper and lower side nozzles,were studied.The experimental results showed that the tracer feeding position had a great influence on the mean residence time,and the relative angle also had a great influence on tracer feeding position.Finally,through comprehensive analysis,the optimal condition parameters were obtained under different tracer feeding positions.These results provide valuable help for the design and optimization of the C-H2 smelting reduction reactor.展开更多
文摘BACKGROUND In rotator cuff repair surgery,the double-row technique is widely performed.Studies have shown that with increased contact area and pressure between tendon and bone interface,better healing is promoted.AIM To assess the different suture configurations with the double-row technique and how this influences the contact area of the rotator cuff tendon to bone.METHODS This was a controlled laboratory study where identical tears were created in 24 fresh porcine shoulders over a 1.5 cm×2.5 cm infraspinatus insertion footprint.Double-row repair techniques,with 3 to 4-suture anchors in different configurations(2 medial,2 lateral vs 2 medial,1 lateral vs 1 medial,2 lateral),were employed for three control groups.Each group consisted of eight shoulders with identical repair configurations.Footprint contact areas of the repaired tendon against the tuberosity were determined using pressure sensitive Fujifilm placed between the tendon and tuberosity.RESULTS The mean contact area between tendon and insertion footprint from the imprinted Fujifilm was obtained using computer software.The contact area measured from a standard 4-suture anchor double row repair was 75.1±9.3 mm2,whereas areas obtained for the 2 lateral-1 medial and 2 medial-1 lateral anchor configurations were 72.9±5.2 mm2 and 75.0±4.9 mm2 respectively.No statistical significance was noted between the three groups.CONCLUSION In the technique of double-row repair,using a 3-suture anchor configuration may offer a non-inferior alternative to the standard 4-anchor construct in terms of efficacy.This may also result in overall cost reduction and shorter surgical time.
基金Projects(NZ2013303,NZ2014201)supported by the National Natural Science Foundation of ChinaProjects(51375226,51305196,51475226)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet's eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The solution of differential governing equation of motion is determined by applying the Fourier series method. The behaviors of dynamic load sharing characteristics affected by the system parameters including gear eccentricities error, ring gear's supporting stiffness, planet's bearing stiffness, torsional stiffness of first stage carrier and input rotation rate were investigated qualitatively and systematically, and sun gear radial orbits at first and second stage were explored as well. Some theoretical results are summarized as guidelines for further research and design of double-row planetary gear train at last.
基金grants from the National Natural Science Foundation of China (51222905, 51321001, 51439006)the National High-Tech R&D Program of China (863 Program, 2011AA100505)+1 种基金the Ministry of Water Resources of China (201201003)the Program for New Century Excellent Talents in University, Ministry of Education, China (NCET11-0479)
文摘Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.
基金National Natural Science Foundation of China(No.51975068)。
文摘Few studies were focused on the load-sharing characteristics of double-row planetary gear(DRPG)systems with bearings.Meanwhile,the supported bearing has an important influence on the transmission characteristics of the entire system.To overcome this problem,a multi-body dynamic(MBD)model of the DRPG system fully considering the influences of bearing parameters is established.Dynamic loads among contacting gear pairs have been obtained to calculate the load-sharing coefficient(LSC)of the system.The LSC of each gear tooth pair has been compared to study the effect of the supported bearing clearance on the load-sharing characteristics.These methods are based on Hertz contact theory.The liner stiffness and damping are used in the model.The results show that the supported bearing clearance has a greatly effect on the LSC of the DRPG system.Choosing appropriate clearance parameters of supported bearing can help suppress the uneven load distribution of the DRPG system.The results can provide some guidance to find new method to study the LSC and increase the service life of planetary gear systems.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3100803)the National Natural Science Founda tion of China(Grant Nos.52208380 and 52078506)+2 种基金the Guangdong Basic and Applied Basic ResearchFoundation,China(Grant No.2023A1515012159)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022)the Science and Technology Program of Guangzhou Municipal Construction Group Co.,Ltd.,China(Grant No.2022-KJ004).
文摘This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upon excavation.The horizontal displacement(δ_(h)),Von Mises stress(δ_(M)),strain(ε),ground surface settlement(δ_(v)),and earth pressure are systematically investigated.Furthermore,the monitoring data of 13 excavation cases supported by double-row piles retaining system are presented and discussed.The experimental results can basically match the numerical results,and the maximumδ_(M),maximum bending moment(M_(max)),maximum horizontal displacement(δ_(hm))of structural members are all less than the tolerance limits.The ground surface settlement model of double-row piles retaining system consists of three zones,i.e.,rebound influence zone,primary influence zone and secondary influence zone.The dhm values are 0.07%–1.42%of the excavation depth(He).The maximum ground surface settlement(δ_(vm))is generally less than dhm.The ratio ofδ_(vm)=δ_(hm)varies between 0.09 and 0.76,with an average value of 0.5.The observed earth pressure on the retained side of front pile(paf)is about 0.53–0.57γH below the excavation surface.Above the excavation surface,p_(af)decreases dramatically when getting closer to the ground surface.
文摘Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibly use a variety of plant landscaping methods to create a richer and more vivid natural landscape,and promote the improvement of the quality of the living environment and the harmonious coexistence between man and nature.
文摘As a new kind of technology in retaining structures, the characteristics of double-row piles are significantly affected by spatial effects. In this paper, double-row piles as a retaining structure are simulated numerically in three-dimension by finite element software PLAXIS 3D FOUNDATION. The behavior differences of piles in different positions around the foundation pit are analyzed. By changing the parameters, including the length-width ratio, the excavation depth, the distance between rows and the diameter of piles, the variations of the lateral deformation, the bending moment and the earth pressure around the piles are determined. The reasonable values of parameters and some suggestions with consideration of earth pressure are proposed for the design of double-row piles as a retaining structure. The results show that the lateral deformation and bending moment are the largest in the middle of long side of the foundation pit, which is identified as the most unfavorable position. It is indicated that the earth pressure between rows above pit bottom is close to active earth pressure, while the earth pressure between rows under pit bottom is close to static earth pressure. It is suggested that 1/2-2/3 of pile length, 0.6-1.2 m, 3d-6d, and 2d-2.5d be chosen as embedded depth of piles, diameter of piles, distance between rows, and distance between piles, respectively, where d is the pile diameter.
基金the Key Research Program of Shanghai Construction Group(No.17JCSF-37)。
文摘Double-row pile(DRP)retaining systems have been widely used in deep excavations in China.Soil between the front and back-row piles(FBP soil)is often improved to decrease the displacement of DRPs in soft soil areas,but the improvement efficiency has rarely been researched.A large and deep excavation supported by a DRP retaining system is introduced,and the effect of FBP soil improvement is discussed by comparing the finite element analysis and the monitoring results.Then,a parametric study of DRP using the finite element method considering the small strain of soil is conducted to investigate the effect of FBP soil improvement.It was shown that the pile deflection and bending moment decrease when the FBP soil is improved.Moreover,the most efficient way to minimize the pile deflection and bending moment is to improve the FBP soil around the excavation level.The FBP soil improvement 2-4 m below the pile head is not very useful for reducing the pile deflection and can be eliminated when the pile displacement limit is not very strict.
基金This study was funded by the National Science and Technology Support Program(2006BAE03A12).
文摘With the growing demand for energy saving,emission reduction,and green metallurgy,we had designed a new C-H2 smelting reduction reactor.In order to solve the key problem that the heat transfer efficiency from high temperature oxidation zone in upper region to low temperature reduction zone in lower region is low in traditional metallurgical reduction reactor,a water simulation was adopted to optimize the mean residence time and to improve the transmission efficiency within the reactor.According to the modified Froude similarity,a water model experimental reactor with a ratio of 1:1 to the prototype was constructed.In the prototype,the feed port was used to feed preheated ore and flux.In order to simulate the effect of different feeding positions of the tracer on the mixing behavior in the molten pool,four points of tracer feeding position were arranged for a systematic study.At the same time,based on double-row side nozzle with thick slag layer in a C-H2 smelting reduction reactor,nine influencing factors,including relative angle between upper and lower side nozzles,were studied.The experimental results showed that the tracer feeding position had a great influence on the mean residence time,and the relative angle also had a great influence on tracer feeding position.Finally,through comprehensive analysis,the optimal condition parameters were obtained under different tracer feeding positions.These results provide valuable help for the design and optimization of the C-H2 smelting reduction reactor.