期刊文献+
共找到3,305篇文章
< 1 2 166 >
每页显示 20 50 100
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground 被引量:15
1
作者 Tang Liang Ling Xianzhang +2 位作者 Xu Pengju Gao Xia Wang Dongsheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期39-50,共12页
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a... This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun. 展开更多
关键词 liquefiable ground seismic soil-pile-structure interaction pile groups of bridge shake table test
下载PDF
Study of vibrating foundations considering soil-pile-structure interaction for practical applications 被引量:5
2
作者 Han Yingcai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期321-327,共7页
An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for t... An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for the dynamic analysis, and compared with a 3D finite element (FE) model. Two commercial software packages are used for dynamic analysis considering the soilpile-structure interaction (SPSI). Stiffness and damping of the pile foundation are generated from a computer program, and then input into the FE model. To examine the SPSI thoroughly, three cases for the soil, piles and superstructure are considered and compared. In the first case, the interaction is fully taken into account, that is, both the superstructure and soil-pile system are flexible. In the second case, the superstructure is flexible but fixed to a rigid base, with no deformation in the base (no SSI). In the third case, the dynamic soil-pile interaction is taken into account, but the table top structure is assumed to be rigid. From the comparison beteen the results of these three cases some conclusions are made, which could be helpful for engineering practice. 展开更多
关键词 soil-pile-structure interaction soil dynamics structural dynamics vibrating foundation
下载PDF
Influence of dynamic soil-pile raft-structure interaction:an experimental approach 被引量:5
3
作者 Rajib Saha Sumanta Haldar Sekhar Chandra Dutta 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期625-645,共21页
Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation... Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation. Major drawback of this assumption is that it cannot capture soil-foundation-structure interaction due to flexibility of soil or the inertial interaction involving heavy foundation masses. Previous studies on this subject addressed mainly the intricacy in modelling of dynamic soil structure interaction (DSSI) but not the implication of such interaction on the distribution of forces at various elements of the pile foundation and supported structure. A recent numerical study by the authors showed significant change in response at different elements of the piled raft supported structure when DSSI effects are considered. The present study is a limited attempt in this direction, and it examines such observations through shake table tests. The effect of DSSI is examined by comparing dynamic responses from fixed base scaled down model structures and the overall systems. This study indicates the possibility of significant underestimation in design forces for both the column and pile if designed under fixed base assumption. Such underestimation in the design forces may have serious implication in the design of a foundation or structural element. 展开更多
关键词 soil-foundation-structure interaction piled raft foundation base shear pile head shear model test
下载PDF
Seismic response of tall building considering soil-pile-structure interaction 被引量:6
4
作者 Han Yingcai Fluor Canada Ltd.,Calgary,AB,Canada Ph.D.,Principal Engineering Specialist 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期57-64,共8页
The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile fo... The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions:(1) rigid base,i.e.no deformation in the foundation:(2) linear soil-pile system;and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated,and compared with the behavior of buildings supported on shallow foundation.With a model of non-reflective boundary between the near field and far field, Novak's method of soil-pile interaction is improved.The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively.A series of dynamic experiments have been done on full-scale piles, including single pile and group,linear vibration and nonlinear vibration,to verify the validity of boundary zone model. 展开更多
关键词 dynamic soil-pile-structure interaction soil dynamics structural dynamics nonlinear vibration seismic response of tall building
下载PDF
Study on soil-pile-structure-TMD interaction system by shaking table model test 被引量:3
5
作者 楼梦麟 王文剑 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期127-137,共11页
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very... The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device. 展开更多
关键词 soil-pile-structure interaction TMD’s performance structural control shaking table model test
下载PDF
Optimum Design of Jacket Platforms Considering Structure-Pile-Soil Interaction 被引量:1
6
作者 宋玉普 封盛 康海贵 《China Ocean Engineering》 SCIE EI 1999年第3期309-316,共8页
This paper proposes an optimum design model for the offshore jacket platform considering multidesign criteria, multi-design constraints and the structure-pile-soil interaction, and gives an optimum design procedure in... This paper proposes an optimum design model for the offshore jacket platform considering multidesign criteria, multi-design constraints and the structure-pile-soil interaction, and gives an optimum design procedure in which the proposed optimum design model is used together with structural analysis software SAP91 and optimum algorithm software OPB1. The Chengbei (#)11 offshore platform, which lies in the Shengli oilfield, is designed by use of the above optimum design model. The results show that the optimum design model is stable, and it depends on neither the optimization algorithm nor initial values of design variables. All values of the objective function converge to the same minimum value, and the speed of convergence is high, showing that the proposed optimum design model is reasonable. 展开更多
关键词 jacket platform optimum design structure-pile-soil interaction
下载PDF
A Novel Conceptual Telescopic Positioning Pile for VLFS Deployed in Shallow Water:Structure Design
7
作者 XU Sheng-wen LIU Xiao-lei +1 位作者 WANG Xue-feng DENG Yan-fei 《China Ocean Engineering》 SCIE EI CSCD 2020年第4期526-536,共11页
A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can au... A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can automatically plug in the soil to resist the environmental loads and pull out from the soil to evacuate or move on to the next operational sea.The feasibility demonstration of the conceptual design includes two parts:function verification and structure design.In the latter part of the conceptual design,a time-domain structural analysis is firstly conducted by using Abaqus software.The simulation results suggest that the preliminary structure scheme is not optimum due to the insufficient structure utilization,although both structure safety of the piles and positioning accuracy are guaranteed.To realize a cost reduction of construction and installation,a Genetic Algorithm-Finite Element Analysis(GA-FEA)method is employed to perform structural optimization.After optimization,31 percent of the weight of each pile is reduced and higher structure utilization is maintained.The difference of the self-weight and allowable buoyancy of a single module(SMOD)of a semisubmersible-type VLFS is much larger than the weight of the piles.Combined with the function verification in our previous work,the conceptual design of using the novel telescopic pile to position VLFS is demonstrated to be feasible. 展开更多
关键词 novel telescopic positioning pile feasibility demonstration structural optimization very large floating structure(VLFS)
下载PDF
Design Considerations for Pile Groups Supporting Marine Structures with Respect to Scour
8
作者 Yasser E. Mostafa 《Engineering(科研)》 2012年第12期833-842,共10页
Piles supporting marine structures such as jetties, relieving platforms, quay walls and fixed offshore structures are subjected to lateral loads due to berthing and mooring forces, wind, waves, storm surges and curren... Piles supporting marine structures such as jetties, relieving platforms, quay walls and fixed offshore structures are subjected to lateral loads due to berthing and mooring forces, wind, waves, storm surges and current forces. This paper presents some factors that affect the design of pile groups supporting marine structures founded in cohesionless soils. Some main aspects that should be considered in the pile group design are addressed such as pile batter angle, pile group arrangement, pile spacing, pile slenderness ratio and magnitude of lateral static loading. Numerical analyses were conducted to investigate these design aspects with and without impact of scour. Different scour depths were considered to cover the possible root causes of scour around pile groups such as waves, current and ship propeller jets. The study revealed that scour has greater impact on lateral loading of pile groups compared to its impact on single piles. Pile groups with side-by-side arrangement exposed to scour are more critical than single piles and piles groups with tandem arrangement due to the combined effect of scour and pile-soil-pile interaction. It is also concluded that scour protection is not always required. More attention and considerations should be given to scour protection around piles especially if the piles are closely spaced, arranged side-by-side and if slenderness ratio is less than 12.5. 展开更多
关键词 pileS pile GROUPS Marine structures SCOUR Battered pileS
下载PDF
Advanced Sheet Pile Curtain Design: Case Study of Cotonou East Corniche
9
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期38-64,共27页
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient... This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures. 展开更多
关键词 Sheet pile Walls and structural Analysis Soil-structure Interaction Modeling structural Sustainability Cotonou East Corniche Sustainable Construction Plaxis Calculation Code Settlement Mitigation
下载PDF
The Shielding Effect of Multi-Pile Structures on Ice Force 被引量:1
10
作者 史庆增 黄焱 宋安 《海洋工程:英文版》 EI 2004年第2期197-206,共10页
The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to m... The shielding effect of the front pile-row on the ice force acting on the back pile-row is studied by ice force model tests. In the tests, the front pile-row is designed to model jacket legs and the back pile-row to model the water resisting pipe-phalanx within the jacket. The shielding factor for ice force corresponding to different conditions are given in this paper. The research indicates that there are many factors, including the longitudinal and lateral spacing between the front and back pile-row, ice attacking angle and the ratio of pile diameter to ice thickness, that influence the shielding effect on ice force. 展开更多
关键词 ice force model test multi-pile structure shielding effect on ice force ice force shielding factor
下载PDF
The Application of Pile Foundation Bearing-Retaining Wall Combination Structure in a Mountainous Urban High Fill Project
11
作者 Hongmei Wang Xiaoguang Mao Qi Su 《Journal of World Architecture》 2022年第4期15-21,共7页
Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support str... Pile foundation bearing-retaining wall combination structure is a new type of support structure developed in recent years.This article focuses on the characteristics,advantages,and application scope of the support structure,while combining a variety of algorithms,according to different geological conditions and slope stability,as well as summarizes the pile foundation bearing-retaining wall combination structure force analysis and design methods,taking a high-fill road project in Chongqing as an example.The application of this support structure under special conditions,such as thicker soil layer,steeper sliding surface,weak foundation,and limited slope release conditions,is presented,which illustrates the technical advantages of this support structure and proving that it has several other advantages,including clear force mechanism as well as economic and reasonable structure,thus providing reference for similar projects. 展开更多
关键词 pile foundation bearing-retaining wall Combined support structure Design calculation method
下载PDF
The Effective Buckling Length on Numerical Study of Pipe-Sectioned Pier-Pile Integral Steel Structure
12
作者 Takayuki Omori Akira Kasai Rei Kohara 《Open Journal of Earthquake Research》 2017年第4期159-167,共9页
Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the... Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the footing being removed, meaning that it is not necessity to greatly change the surroundings of these bridges. While there are environmental and landscape advantages, there are also a few demerits for the overall land-scape designs, including demerits in the design of this proposed structure which consists of relatively slender parts. This proposed structure has already been constructed in areas where possibility of a severe earthquake is low. However, some problems that have yet to be examined are related to the use of this proposed structure in areas where earthquakes are frequent. Lacking detailed studies of its behavior during severe earthquakes, it is currently difficult to construct these structures in Japan. Consequently, it is necessary to investigate in detail limited performance about compression and bending moment, and earthquake- resistant performance of these structures in order to resolve these problems. In this paper, It was clarified the relationship between the rigidity of the ground and the effective buckling length by buckling analysis and elasto- plastic finite deformation analysis. Moreover, it was proposed a simplified formula using a proposed characteristic value β and several factors for analysis accuracy. A simplified formula would support to determine the effective buckling length to design the pier using the load-bearing capacity curve based on the slenderness ratio parameter. 展开更多
关键词 Pire-pile INTEGRAL Steel structures EFFECTIVE BUCKLING LENGTH PIPE Section
下载PDF
Innovative Techniques Unveiled in Advanced Sheet Pile Curtain Design
13
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期1-37,共37页
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi... This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques. 展开更多
关键词 Sheet pile Curtain Design Soil-structure Interaction Geotechnical Engineering Advanced Design Techniques Finite Element Analysis Innovative Geotechnical Methods
下载PDF
Non-Simultaneous Failure of Ice in Front of Multi-Leg Structures 被引量:2
14
作者 史庆增 黄焱 +1 位作者 宋安 佟建峰 《China Ocean Engineering》 SCIE EI 2002年第2期183-192,共10页
Because the multi-leg jacket structure is the major type of offshore structures in the Bohai Sea, the study of non-simultaneous failure of ice on multi-leg structures is important. However, the non-simultaneous failur... Because the multi-leg jacket structure is the major type of offshore structures in the Bohai Sea, the study of non-simultaneous failure of ice on multi-leg structures is important. However, the non-simultaneous failure has not been considered in engineering design until now, obviously resulting in costly design and notable waste. To resolve this problem, this paper, by means of analysis of experimental data, calculates the coefficient of the non-simultaneous failure for the double-pile structure, the square four-leg structure, the single-line multi-pile structure, and the conical structure, respectively, and provides some reference criteria for engineering design. 展开更多
关键词 multi-leg structure pile CONE ice force non-simutaneous failure of ice coefficient of non-simultaneous failure af ice
下载PDF
New Types of Wharf Structures in Chiwan Port
15
作者 Liang Fengwu Senior Engineer, Shenzhen Nanshan Engineering Build Co., Shenzhen 518068 《China Ocean Engineering》 SCIE EI 1994年第4期437-446,共10页
A bold innovation was carried out for the structural type of wharves in line with local conditions in Chiwan Port, in which a group of wharves with novel structures have been built in this port during the past ten years.
关键词 wharf structure PORT gravity structure pile structure sheet structure
下载PDF
Vibration Analysis of Frame Structure with Soil-Structure Interaction
16
作者 Raft Mohammed Qasim 《Journal of Environmental Science and Engineering(B)》 2015年第5期262-281,共20页
A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall s... A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall stiffness of the structural system and may increase the natural period of the system. The effect of soil flexibility is suggested to be accounted through consideration of springs which have specified stiffness and soil half space. Results show that the dynamic response of frame structure to vibrations is due to applied dynamic load and is highly dependent on the soil type and the method of modeling soil structure interaction. The response of frame structure under dynamic load is higher in case of linear discrete independent spring as comparing with perfect bond cases. Except the response of frame in case of piles embedded in soft clay, half space are higher than frame with piles and linear elastic spring due to the interaction between the frequencies of applied load and frequencies of frame structure. Also, result showed that it is important to include the soil-structure interaction in the analysis of the system in order to correctly simulate the dynamic problem for controlling on the resonance phenomena. 展开更多
关键词 Soil structure interaction FLEXIBILITY pile
下载PDF
洞桩法地铁车站边桩结构受力机制的模型试验设计 被引量:1
17
作者 章慧健 郑余朝 +2 位作者 刘功宁 汪波 张帅 《实验技术与管理》 CAS 北大核心 2024年第3期19-28,共10页
为了方便学生更形象地理解洞桩法地铁车站边桩结构的受力机制,该文以广州地区某洞桩法地铁车站工程为依托,设计了一种简化的洞桩法车站边桩结构模型试验。基于该试验方法,演示分析了边桩结构在洞桩法车站开挖过程中的施工力学行为规律,... 为了方便学生更形象地理解洞桩法地铁车站边桩结构的受力机制,该文以广州地区某洞桩法地铁车站工程为依托,设计了一种简化的洞桩法车站边桩结构模型试验。基于该试验方法,演示分析了边桩结构在洞桩法车站开挖过程中的施工力学行为规律,并对比研究了不同桩型布置参数下的桩后土压力、边桩结构的力学和变形规律。通过该试验,为学生展示了洞桩法边桩结构模型的设计、制作、试验具体操作及数据监测的全过程,从而让学生更好地掌握洞桩法车站边桩结构力学行为演变规律,以及采用不同边桩布置型式的力学行为差异。 展开更多
关键词 洞桩法 边桩结构 模型试验 施工力学 变形规律
下载PDF
刚度差异桩组合桩网结构路基承载特性
18
作者 邓友生 李文杰 +3 位作者 张克钦 李龙 姚志刚 肇慧玲 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第1期26-35,共10页
刚度差异桩组合桩网结构路基因具有工后沉降小、经济效益好的优点而被广泛应用于铁道工程。与传统桩承结构路基相比,该结构桩土协同工作规律更为复杂,为研究其承载特性和土体沉降变化规律,通过室内模型试验和数值计算分析刚度差异桩组... 刚度差异桩组合桩网结构路基因具有工后沉降小、经济效益好的优点而被广泛应用于铁道工程。与传统桩承结构路基相比,该结构桩土协同工作规律更为复杂,为研究其承载特性和土体沉降变化规律,通过室内模型试验和数值计算分析刚度差异桩组合桩网结构路基在静力荷载下的桩身应力、桩土应力比、格栅应力、桩侧摩阻力和土体沉降变化特点。结果表明:刚、柔性桩的承载力主要由侧摩阻力提供;刚性桩的桩土应力比随上部荷载增加呈先增长后稳定趋势,荷载在路基中沿中心桩体向边缘桩体传递,并沿路堤行车方向朝路堤横断面方向扩散;土工格栅和碎石加筋垫层共同工作,协调荷载进行再分配,均衡路基应力分布;路基中心排桩沿横断面方向的土体沉降近似呈盆状分布,刚性桩控制路基土体变形和沉降的性状明显优于柔性桩;选择性布置刚度较大长桩可减小路基沉降量。 展开更多
关键词 路基 刚度差异桩 桩网结构 承载特性 模型试验 数值计算
下载PDF
武汉协和医院质子医学中心结构设计及关键问题
19
作者 陈晓强 肖明 +5 位作者 李宏胜 陈俊 陈元坤 任艺 罗志杨 刘峪菲 《建筑结构》 北大核心 2024年第17期105-111,104,共8页
武汉协和医院质子医学中心的建设对结构专业设计提出了特殊要求。详细介绍了项目概况、设计条件,阐述了基础与地下室以及上部结构的设计要点,包括桩基选型、结构分缝、结构方案、大跨等特殊部位处理方法等。针对质子区结构设计,重点论... 武汉协和医院质子医学中心的建设对结构专业设计提出了特殊要求。详细介绍了项目概况、设计条件,阐述了基础与地下室以及上部结构的设计要点,包括桩基选型、结构分缝、结构方案、大跨等特殊部位处理方法等。针对质子区结构设计,重点论述了沉降控制、振动控制、辐射防护、吊装孔设计等关键问题。设计时通过合理设置结构缝、优化桩基础设计、采用大厚度墙板和重密度混凝土、设计特殊预制梁等措施,较好地解决了上述问题;并运用环境调研、数值模拟、现场实测等方法,取得了良好的效果;结构设计能够满足质子医院的建筑功能需求和特殊工艺要求。 展开更多
关键词 质子医学中心 桩基选型 结构分缝 大跨结构 沉降控制 振动控制 辐射防护
下载PDF
变刚度地基上隔震结构群桩基础动力响应试验研究
20
作者 于旭 单志承 +1 位作者 庄海洋 陈国兴 《振动与冲击》 EI CSCD 北大核心 2024年第2期208-218,共11页
通过控制输入地震动持时压缩比和强度的方法,提出了变刚度地基上桩基基础隔震结构振动台模型试验方法,并结合已完成的不同地基上桩基基础隔震结构系列振动台模型试验,分析了地基刚度变化对隔震结构群桩基础动力学特性的影响规律。结果表... 通过控制输入地震动持时压缩比和强度的方法,提出了变刚度地基上桩基基础隔震结构振动台模型试验方法,并结合已完成的不同地基上桩基基础隔震结构系列振动台模型试验,分析了地基刚度变化对隔震结构群桩基础动力学特性的影响规律。结果表明,结构-土体相对刚度比和输入地震动强度显著影响隔震结构群桩基础弯矩反应,强震下结构-土体相对刚度比越大,隔震结构群桩基础中间桩体上部弯矩反应幅值增大越显著,而中间桩体下部弯矩幅值较小。当输入加速度峰值和结构-土体相对刚度比R大于一定限值时,群桩基础震陷显著增加,群桩基础承台转动反应强烈,同时群桩基础桩顶水平位移在主震后出现明显的单边累积水平位移,说明强震作用下地基刚度变化过程中隔震结构群桩基础上部更易出现地震破坏,而群桩基础震陷与基础承台强烈转动反应的共同作用可能是导致隔震结构群桩基础上部弯矩骤增的主因。 展开更多
关键词 变刚度地基 群桩基础 基础隔震结构 振动台试验 地震反应
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部