Based on analyses of experimental results of water jet drilling, the fluid motion law in rock pores and the tendency of energy distribution, the rock-breaking process under high pressure water jet drilling has been s...Based on analyses of experimental results of water jet drilling, the fluid motion law in rock pores and the tendency of energy distribution, the rock-breaking process under high pressure water jet drilling has been studied systematically. The research indicates that the main interaction between the rock and water jet is interface coupling, that the impacting load and the static pressure of the water jet act together to make the rock break, and that the stress wave is the main factor. Water jet drilling can be divided into two stages: At the initial stage, the stress wave plays the main role and most of the rock breaking takes place; at the later stage, the existing rock defects, for instance, micro-holes and micro-cracks, are propagated and merged to make macroscopic damage, and then the diameter of the jet-drilled hole is expanded.展开更多
Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste...One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.展开更多
In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component ...In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed(penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.展开更多
In this context, we applied the radial water jet drilling(RJD) technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bntheim, Germany. For testing the state-of-the-art jetti...In this context, we applied the radial water jet drilling(RJD) technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bntheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations.Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells.展开更多
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during a...Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.展开更多
Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-bas...Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers.展开更多
Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of ...Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of shock wave in water for different distances is attained;the major parameters such as pressure amplitude and positive action time,and the propagation attenuation rule of shock wave in water are analyzed in this paper.The results can be helpful for engineering design and construction and environmental safety assessment.展开更多
The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/...The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination.展开更多
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines...To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.展开更多
The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the...The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the last decades. Types of imperfections either geotechnical or structural are documented in literature and well explained. Nevertheless, the influence of these imperfections in pile load calculations is still ambiguous. The work presented herein is devoted to study soil disturbance during construction of piles using continuous flight auger, CFA. The study of soil disturbance due to drilling needs some evidence. The source of this evidence is field observations collected from four different construction sites, which are documented in this paper. The study concluded that the disturbed zone of soil by CFA has a conical shape and extending laterally to a distance equivalent to ten times of the pile diameter around the auger at the cutting bits and has an inclined surface of4:1 (vertical : horizontal). Furthermore excess pore water pressure was induced in soil in the vicinity of pile drilling. Due to this excess pore water pressure, 3.5% to 6.5% of piles constructed by CFA showed percolation of water from the top of the piles through fresh concrete. Also, subsidence of fresh concrete in pile hole was recorded in few of the constructed piles. Pile loading tests showed that the percolation of water and/or subsidence of fresh concrete have not appreciable influence on the load-displacement characteristics of the piles. Moreover, percolation of water at pile heads.展开更多
This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port H...This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.展开更多
With the enhancement of environmental protection awareness, the requirements on drilling fluid are increasingly strict, and the use of ordinary oil-based drilling fluid has been strictly restricted. In order to solve ...With the enhancement of environmental protection awareness, the requirements on drilling fluid are increasingly strict, and the use of ordinary oil-based drilling fluid has been strictly restricted. In order to solve the environmental protection and oil-gas reservoir protection problems of offshore oil drilling, a new synthetic basic drilling fluid system is developed. The basic formula is as follows: a basic fluid (80% Linear a-olefin + 20% Simulated seawater) + 2.5% nano organobentonite + 3.5% emulsifier RHJ-5<sup>#</sup> + 2.5% fluid loss agent SDJ-1 + 1.5% CaO + the right amount of oil wetting barite to adjust the density, and a multifunctional oil and gas formation protective agent YRZ has been developed. The performance was evaluated using a high-low-high-temperature rheometer, a high-temperature and high-pressure demulsification voltage tester, and a high-temperature and high-pressure dynamic fluid loss meter. The results show that the developed synthetic based drilling fluid has good rheological property, demulsification voltage ≥ 500 V, temperature resistance up to 160°C, high temperature and high pressure filtration loss < 3.5 mL. After adding 2% - 5% YRZ into the basic formula of synthetic based drilling fluid, the permeability recovery value exceeds 90% and the reservoir protection effect is excellent. The new synthetic deepwater drilling fluid is expected to have a good application prospect in offshore deepwater drilling.展开更多
This work concerns the collecting field of the Abrobakro site, the objective of which is to determine the thickness of the layers crossed during drilling from electrical logging in order to propose the equipment plan ...This work concerns the collecting field of the Abrobakro site, the objective of which is to determine the thickness of the layers crossed during drilling from electrical logging in order to propose the equipment plan for the various boreholes. The electrical logging data sheets, particularly those on resistivity and expeditious granulometry using a 1.25 mm and 2 mm mesh sieve, were used. The layer thicknesses are determined with the inflection points on the graphs. The electrical logging shows that the sands in the study area have resistivity values between 400 and 5000 Ω.m. The decrease in resistivity observed at 50 m for all boreholes shows that the static level of the groundwater is at this depth. The results of the accelerated granulometry show that the first 20 meters contain more fine particles and coarse to very coarse sands from 20 m. The granulometry of the screen laying areas shows that the 1.5 mm slot openings are best suited for all drilling in the Abrobakro collecting field. The diameter d10 of the aquiferous sands of the collecting field is close to 1.25 mm.展开更多
To improve the thermal stability of starch in water-based drilling fluid,monoethanolamine(MEA)was added,and the effect was investigated by laboratory experiment.The experimental results show that the addition of monoe...To improve the thermal stability of starch in water-based drilling fluid,monoethanolamine(MEA)was added,and the effect was investigated by laboratory experiment.The experimental results show that the addition of monoethanolamine(MEA)increases the apparent viscosity,plastic viscosity,dynamic shear force,and static shear force of the drilling fluid,and reduces the filtration rate of drilling fluid and thickness of mud cake apparently.By creating hydrogen bonds with starch polymer,the monoethanolamine can prevent hydrolysis of starch at high temperature.Starch,as a natural polymer,is able to improve the rheological properties and reduce filtration of drilling fluid,but it works only below 121℃.The MEA will increase the thermal stability of starch up to 160℃.There is a optimum concentration of MEA,when higher than this concentration,its effect declines.展开更多
Seeking effective solutions to control and mitigate the interaction between drilling fluids and clay formations has been a challenge for many years, and various shale inhibitors have shown excellent results in problem...Seeking effective solutions to control and mitigate the interaction between drilling fluids and clay formations has been a challenge for many years, and various shale inhibitors have shown excellent results in problematic shale formations around the world. Herein, the hyperbranched polyamine (HBPA) inhibitor with a higher ratio of amine groups and obvious tendentiousness in protonation was successfully synthesized from ethylenediamine, acryloyl chloride and aziridine by five steps, in which the metal-organic framework (MOF) was employed as a catalyst for ring-open polycondensation (ROP). The structure and purity were confirmed by nuclear magnetic resonance hydrogen spectroscopy and high-performance liquid chromatography (HPLC) respectively. The HBPA displays more excellent performance than EDA and KCl widely applied in the oil field. After aging at 80°C and 180°C, the YP of a slurry system containing 25 wt.% bentonite and 2 wt.% HBPA are just 8.5 Pa and 5.5 Pa (wt.%: percentage of mass), respectively. The swelling lengths of 2 wt.% HBPA are estimated to be 1.78 mm, which falls by 70% compared with that of freshwater. Under a hot rolling aging temperature of 180°C, the HBPA system demonstrates a significant inhibition with more than 85% shale cuttings recovery rate and is superior to conventional EDA and KCl. Mechanism analysis further validates that the HBPA can help to increase the zeta potential.展开更多
Radial drilling technology, of which the jet bit is the key device, is a research focus in the field of oil drilling and production. This paper establishes mechanical equations for jet bits and analyzes the hydroseal ...Radial drilling technology, of which the jet bit is the key device, is a research focus in the field of oil drilling and production. This paper establishes mechanical equations for jet bits and analyzes the hydroseal of backward jets in bottom holes. Meanwhile this paper establishes a mechanical equation for a high pressure hose and analyzes the axial force distribution. Laboratory experiments indicate that the flow rate, the angle between the backward nozzle axis and the jet bit axis, and the hole diameter are the major influencing factors; the generation of the pulling force is mainly due to the inlet pressure of the jet bit; the backward jets can significantly increase not only the pulling force but also the stability of jet bits. The pulling force would reach 8,376 N under experimental conditions, which can steadily pull the high-pressure hose forward.展开更多
Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pr...Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.展开更多
Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limi...Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.展开更多
文摘Based on analyses of experimental results of water jet drilling, the fluid motion law in rock pores and the tendency of energy distribution, the rock-breaking process under high pressure water jet drilling has been studied systematically. The research indicates that the main interaction between the rock and water jet is interface coupling, that the impacting load and the static pressure of the water jet act together to make the rock break, and that the stress wave is the main factor. Water jet drilling can be divided into two stages: At the initial stage, the stress wave plays the main role and most of the rock breaking takes place; at the later stage, the existing rock defects, for instance, micro-holes and micro-cracks, are propagated and merged to make macroscopic damage, and then the diameter of the jet-drilled hole is expanded.
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
基金supported by Project 863 (No. 2006AA09Z316)NSFC (No. 50704028 and 40974071)
文摘One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.
基金Financial supports by the 973 National Research Project of China (No. 2015CB251201)the program for Changjiang Scholars and Innovative Research Team in University (‘PCSIRT’) (IRT_14R58)the Fundamental Research Funds for the Central Universities (No. 15CX0 5036A)
文摘In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed(penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.
基金funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.654662
文摘In this context, we applied the radial water jet drilling(RJD) technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bntheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations.Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells.
文摘Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.
基金financially supported by CNPC Innovation Foundation(2020D-5007-0310)National Natural Science Foundation of China(No.51974354)National Key Research and Development Project(2019YFA0708303)。
文摘Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers.
基金National Natural Science Foundation of China (No. 51174147) Natural Science Foundation of Hubei Province (No. 2012FFA135)
文摘Taking the underwater reef blasting in Gulei sea channel of Xiamen Port as an example,the forming characteristic of shock wave in water for underwater drilling blasting is analyzed.By field monitoring,the pressure of shock wave in water for different distances is attained;the major parameters such as pressure amplitude and positive action time,and the propagation attenuation rule of shock wave in water are analyzed in this paper.The results can be helpful for engineering design and construction and environmental safety assessment.
文摘The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination.
文摘To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.
文摘The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the last decades. Types of imperfections either geotechnical or structural are documented in literature and well explained. Nevertheless, the influence of these imperfections in pile load calculations is still ambiguous. The work presented herein is devoted to study soil disturbance during construction of piles using continuous flight auger, CFA. The study of soil disturbance due to drilling needs some evidence. The source of this evidence is field observations collected from four different construction sites, which are documented in this paper. The study concluded that the disturbed zone of soil by CFA has a conical shape and extending laterally to a distance equivalent to ten times of the pile diameter around the auger at the cutting bits and has an inclined surface of4:1 (vertical : horizontal). Furthermore excess pore water pressure was induced in soil in the vicinity of pile drilling. Due to this excess pore water pressure, 3.5% to 6.5% of piles constructed by CFA showed percolation of water from the top of the piles through fresh concrete. Also, subsidence of fresh concrete in pile hole was recorded in few of the constructed piles. Pile loading tests showed that the percolation of water and/or subsidence of fresh concrete have not appreciable influence on the load-displacement characteristics of the piles. Moreover, percolation of water at pile heads.
文摘This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.
文摘With the enhancement of environmental protection awareness, the requirements on drilling fluid are increasingly strict, and the use of ordinary oil-based drilling fluid has been strictly restricted. In order to solve the environmental protection and oil-gas reservoir protection problems of offshore oil drilling, a new synthetic basic drilling fluid system is developed. The basic formula is as follows: a basic fluid (80% Linear a-olefin + 20% Simulated seawater) + 2.5% nano organobentonite + 3.5% emulsifier RHJ-5<sup>#</sup> + 2.5% fluid loss agent SDJ-1 + 1.5% CaO + the right amount of oil wetting barite to adjust the density, and a multifunctional oil and gas formation protective agent YRZ has been developed. The performance was evaluated using a high-low-high-temperature rheometer, a high-temperature and high-pressure demulsification voltage tester, and a high-temperature and high-pressure dynamic fluid loss meter. The results show that the developed synthetic based drilling fluid has good rheological property, demulsification voltage ≥ 500 V, temperature resistance up to 160°C, high temperature and high pressure filtration loss < 3.5 mL. After adding 2% - 5% YRZ into the basic formula of synthetic based drilling fluid, the permeability recovery value exceeds 90% and the reservoir protection effect is excellent. The new synthetic deepwater drilling fluid is expected to have a good application prospect in offshore deepwater drilling.
文摘This work concerns the collecting field of the Abrobakro site, the objective of which is to determine the thickness of the layers crossed during drilling from electrical logging in order to propose the equipment plan for the various boreholes. The electrical logging data sheets, particularly those on resistivity and expeditious granulometry using a 1.25 mm and 2 mm mesh sieve, were used. The layer thicknesses are determined with the inflection points on the graphs. The electrical logging shows that the sands in the study area have resistivity values between 400 and 5000 Ω.m. The decrease in resistivity observed at 50 m for all boreholes shows that the static level of the groundwater is at this depth. The results of the accelerated granulometry show that the first 20 meters contain more fine particles and coarse to very coarse sands from 20 m. The granulometry of the screen laying areas shows that the 1.5 mm slot openings are best suited for all drilling in the Abrobakro collecting field. The diameter d10 of the aquiferous sands of the collecting field is close to 1.25 mm.
文摘To improve the thermal stability of starch in water-based drilling fluid,monoethanolamine(MEA)was added,and the effect was investigated by laboratory experiment.The experimental results show that the addition of monoethanolamine(MEA)increases the apparent viscosity,plastic viscosity,dynamic shear force,and static shear force of the drilling fluid,and reduces the filtration rate of drilling fluid and thickness of mud cake apparently.By creating hydrogen bonds with starch polymer,the monoethanolamine can prevent hydrolysis of starch at high temperature.Starch,as a natural polymer,is able to improve the rheological properties and reduce filtration of drilling fluid,but it works only below 121℃.The MEA will increase the thermal stability of starch up to 160℃.There is a optimum concentration of MEA,when higher than this concentration,its effect declines.
文摘Seeking effective solutions to control and mitigate the interaction between drilling fluids and clay formations has been a challenge for many years, and various shale inhibitors have shown excellent results in problematic shale formations around the world. Herein, the hyperbranched polyamine (HBPA) inhibitor with a higher ratio of amine groups and obvious tendentiousness in protonation was successfully synthesized from ethylenediamine, acryloyl chloride and aziridine by five steps, in which the metal-organic framework (MOF) was employed as a catalyst for ring-open polycondensation (ROP). The structure and purity were confirmed by nuclear magnetic resonance hydrogen spectroscopy and high-performance liquid chromatography (HPLC) respectively. The HBPA displays more excellent performance than EDA and KCl widely applied in the oil field. After aging at 80°C and 180°C, the YP of a slurry system containing 25 wt.% bentonite and 2 wt.% HBPA are just 8.5 Pa and 5.5 Pa (wt.%: percentage of mass), respectively. The swelling lengths of 2 wt.% HBPA are estimated to be 1.78 mm, which falls by 70% compared with that of freshwater. Under a hot rolling aging temperature of 180°C, the HBPA system demonstrates a significant inhibition with more than 85% shale cuttings recovery rate and is superior to conventional EDA and KCl. Mechanism analysis further validates that the HBPA can help to increase the zeta potential.
基金supported by High-tech Research and Development Program of China (No. 2007AA09Z315)Doctoral Foundation of Ministry of Education of China (No. 20070425006)
文摘Radial drilling technology, of which the jet bit is the key device, is a research focus in the field of oil drilling and production. This paper establishes mechanical equations for jet bits and analyzes the hydroseal of backward jets in bottom holes. Meanwhile this paper establishes a mechanical equation for a high pressure hose and analyzes the axial force distribution. Laboratory experiments indicate that the flow rate, the angle between the backward nozzle axis and the jet bit axis, and the hole diameter are the major influencing factors; the generation of the pulling force is mainly due to the inlet pressure of the jet bit; the backward jets can significantly increase not only the pulling force but also the stability of jet bits. The pulling force would reach 8,376 N under experimental conditions, which can steadily pull the high-pressure hose forward.
基金supported by the Fundamental Research Funds for the Central University (Nos.CDJZR10248801,CDJZR122488 01)the National Natural Science Foundation of China (No.51104191)
文摘Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.
基金support from the project of CNOOC China Limited-Shenzhen (Grant No. Z2007SLSZ-034)the foundation project of the State Key Laboratory of Petroleum Resource and Prospecting (Grant No. PRPDX2008-08) is gratefully acknowledged
文摘Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.