The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the t...The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.展开更多
Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-...Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-thick Q235-B plate and the process and mechanism of root welding with back formation were investigated.The heating position of the MAG-arc at the front of the molten pool could be adjusted by using the electromagnetic force between the MAG-arc and the MIG-arc,and part of the arc energy could work on the root face directly.By combining the arc-discharge behaviour and analysis of flow in the molten pool,the shear stress of a tungsten inert gas(TIG)arc to the molten pool could make the liquid metal flow backwards.Thus,the quality of the front and bottom liquid metal were reduced,which favored the balance and stability.Continuous and stable back formation with uniform penetration could be achieved by using the pulse MAG–TIG dual-arc welding technology.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
Based on the analysis of the three-dimensional liquid surface behavior of TIG penetrated weld pool,the three-dimensional shape models of weld pool with different values of the back fusion zone radius RB were obtained....Based on the analysis of the three-dimensional liquid surface behavior of TIG penetrated weld pool,the three-dimensional shape models of weld pool with different values of the back fusion zone radius RB were obtained.The effects of arc on the penetrated weld pool were studied by numerical simulation with finite elements analysis software Surface Evolver.The results show that the size and shape of the back weld pool are not affected obviously by the arc,and the top surface of the weld pool is lowered by arc.From pulse background to pulse peak,the increase of the arc voltage(or the arc light intensity) is due to two factors.One is the increase of the current,and the other is the lowering of the top weld pool surface.展开更多
文摘The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.
基金Innovation Research Group Project of National Natural Science Foundation of China(51621064)The National Natural Science Foundation General Projects(11375038).
文摘Because of the presence of lower-level automation and efficiency in the backing welding of medium–thick plates,pulse-metalactive-gas–metal-inert-gas(MAG–MIG)dual-arc welding was applied to backing welding of 24-mm-thick Q235-B plate and the process and mechanism of root welding with back formation were investigated.The heating position of the MAG-arc at the front of the molten pool could be adjusted by using the electromagnetic force between the MAG-arc and the MIG-arc,and part of the arc energy could work on the root face directly.By combining the arc-discharge behaviour and analysis of flow in the molten pool,the shear stress of a tungsten inert gas(TIG)arc to the molten pool could make the liquid metal flow backwards.Thus,the quality of the front and bottom liquid metal were reduced,which favored the balance and stability.Continuous and stable back formation with uniform penetration could be achieved by using the pulse MAG–TIG dual-arc welding technology.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
文摘Based on the analysis of the three-dimensional liquid surface behavior of TIG penetrated weld pool,the three-dimensional shape models of weld pool with different values of the back fusion zone radius RB were obtained.The effects of arc on the penetrated weld pool were studied by numerical simulation with finite elements analysis software Surface Evolver.The results show that the size and shape of the back weld pool are not affected obviously by the arc,and the top surface of the weld pool is lowered by arc.From pulse background to pulse peak,the increase of the arc voltage(or the arc light intensity) is due to two factors.One is the increase of the current,and the other is the lowering of the top weld pool surface.