In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient o...In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.展开更多
In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influen...In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.展开更多
Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS in...Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.展开更多
Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate ...Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate dynamical model of industrial robots,which greatly hinders the realization of a stable,fast and accurate trajectory tracking control.Therefore,the general expression of the constraint relation in the explicit dynamic equation of the multi-DOF industrial robot is derived on the basis of solving the Jacobian matrix and Hessian matrix by using the kinematic influence coefficients method.Moreover,an explicit dynamic equation with general constraint relation expression is established based on the Udwadia-Kalaba theory.The problem of increasing the time of establishing constraint relationship when the multi-DOF industrial robots complete complex task constraints is solved.With the SCARA robot as the research object,the simulation results show that the proposed method can provide a new idea for industrial robot system modeling with complex constraints.展开更多
A Large balancing weight may be obtained by calculation, when the ordinary influence coefficient method is used. In this paper, a new residual value balance method is recommended. The fundamental idea of the new metho...A Large balancing weight may be obtained by calculation, when the ordinary influence coefficient method is used. In this paper, a new residual value balance method is recommended. The fundamental idea of the new method is on the principle of getting the minimized weight on condition that the vibration values at various points are less than the admitted ones. Experimental results show that this method is effective for balancing the insensitive rotor and rotors with special dynamic characteristics.展开更多
文摘In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175422)
文摘In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.
文摘Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.
基金the Beijing Municipal Scienceand Technology Project (No.KM202111417006)the Academic Research Projects of Beijing Union University (Nos.ZK10202305 and ZK80202004)the Beijing Municipal Science and Technology Project (No.KM202111417005)。
文摘Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate dynamical model of industrial robots,which greatly hinders the realization of a stable,fast and accurate trajectory tracking control.Therefore,the general expression of the constraint relation in the explicit dynamic equation of the multi-DOF industrial robot is derived on the basis of solving the Jacobian matrix and Hessian matrix by using the kinematic influence coefficients method.Moreover,an explicit dynamic equation with general constraint relation expression is established based on the Udwadia-Kalaba theory.The problem of increasing the time of establishing constraint relationship when the multi-DOF industrial robots complete complex task constraints is solved.With the SCARA robot as the research object,the simulation results show that the proposed method can provide a new idea for industrial robot system modeling with complex constraints.
文摘A Large balancing weight may be obtained by calculation, when the ordinary influence coefficient method is used. In this paper, a new residual value balance method is recommended. The fundamental idea of the new method is on the principle of getting the minimized weight on condition that the vibration values at various points are less than the admitted ones. Experimental results show that this method is effective for balancing the insensitive rotor and rotors with special dynamic characteristics.