Although the five-degree-of-freedom magnetic levitation system composed of two conical bearingless switched reluctance motors(CBSRMs)owns the simplest structure,the torque and levitation forces are coupled greatly.The...Although the five-degree-of-freedom magnetic levitation system composed of two conical bearingless switched reluctance motors(CBSRMs)owns the simplest structure,the torque and levitation forces are coupled greatly.Therefore,it is difficult to make the rotor rotate and be fully levitated simultaneously.To solve this problem,two different role division control strategies are proposed in this paper,i.e.individual role division and mutual role division control strategies.The difference between them is the selection of motor which controls the torque or the axial force.In order to understand the characteristics of control variables,the principle and mathematical model of CBSRM are introduced.After that,two control strategies are explained in detail.To verify the demonstrated performance,the simulations are completed with MATLAB/Simulink.展开更多
Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong...Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong candidate for high-speed driving fields. Under the circumstances, a 12/14 BSRM with hybrid stator pole has been proposed due to its high output torque density and excellent decoupling characteristics between torque and suspension force. However, this motor has torque dead-zone, which leads to problems of self-start at some rotor positions and large torque ripple during normal operation. To solve the existing problems in the 12/14 type, an asymmetric rotor pole type BSRM is proposed. The structure and design process of the proposed motor is presented in detail. The characteristics of the proposed motor is analyzed and compared with that of the 12/14 type. Furthermore, prototype of the proposed structure is designed, manufactured and experimented. Finally, simulation and test results are illustrated and analyzed to prove the validity of the proposed structure.展开更多
基金supported by the National Natural Science Foundations of China (Nos. 51877107,51577087,51477074)
文摘Although the five-degree-of-freedom magnetic levitation system composed of two conical bearingless switched reluctance motors(CBSRMs)owns the simplest structure,the torque and levitation forces are coupled greatly.Therefore,it is difficult to make the rotor rotate and be fully levitated simultaneously.To solve this problem,two different role division control strategies are proposed in this paper,i.e.individual role division and mutual role division control strategies.The difference between them is the selection of motor which controls the torque or the axial force.In order to understand the characteristics of control variables,the principle and mathematical model of CBSRM are introduced.After that,two control strategies are explained in detail.To verify the demonstrated performance,the simulations are completed with MATLAB/Simulink.
基金supported by National Natural Science Foundation of China under Grant 52077141 and 51920105011Young and Middle-Aged Scientific and Technological Innovation Talent Program of Shenyang City of Liaoning Province of China under Grant RC200427。
文摘Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong candidate for high-speed driving fields. Under the circumstances, a 12/14 BSRM with hybrid stator pole has been proposed due to its high output torque density and excellent decoupling characteristics between torque and suspension force. However, this motor has torque dead-zone, which leads to problems of self-start at some rotor positions and large torque ripple during normal operation. To solve the existing problems in the 12/14 type, an asymmetric rotor pole type BSRM is proposed. The structure and design process of the proposed motor is presented in detail. The characteristics of the proposed motor is analyzed and compared with that of the 12/14 type. Furthermore, prototype of the proposed structure is designed, manufactured and experimented. Finally, simulation and test results are illustrated and analyzed to prove the validity of the proposed structure.