We investigated a series of novel motors and pumps with a new structure called double-stator. Double-stator can be used as pump or motor just for the working condition on demand. A certain amount of pumps or motors ar...We investigated a series of novel motors and pumps with a new structure called double-stator. Double-stator can be used as pump or motor just for the working condition on demand. A certain amount of pumps or motors are formed in one shell and these subpumps or submotors can work alone or in company without influence on other pumps or moters. This kind of double-stator pumps (motors) are called multi-pumps (multi-motors). Through the analysis of multifarious connection modes of single-acting double-stator multi-pumps and multi-motors, the mathematical expressions of output flow rate, rotational speed and torque are acquired. The results indicate that different flow rates can be provided by one fixed displacement double-stator multi-pump system under the condition of an unalterable driven speed. Likewise, under the terms of a fixed input flow and without complex variable mechanisms, the functions of double speeds, multiple speeds and even differential connection can be realized by a double-stator multi-motor system with various output rotational speeds and torques.展开更多
Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machin...Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.展开更多
In addition to the characteristics of a conventional motor, a novel direct-drive double-stator permanent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate. Throug...In addition to the characteristics of a conventional motor, a novel direct-drive double-stator permanent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate. Through numerical calculation and analysis, the output torque of double-stator permanent-magnet brushless motor of the same volume as the traditional machine is discussed, and the reduction of torque ripple by using the structure features of this motor is investigated. The results indicate that lower torque ripple under the condition of ideal effective torque can be obtained by the rational design of motor. The prototype motors tested show that this kind of motor structure has a higher power density.展开更多
A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational spee...A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.展开更多
A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torqu...A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torque waveforms of the prototype motor when staggering two stators are analyzed. The method that can reduce torque ripple making use of the structure features of this motor is investigated. The results of numerical calculation and experiment indicate that designing motor with this kind of structure is a good scheme for increasing the power density.展开更多
This paper compares the torque characteristics of single stator permanent magnet synchronous motor(PMSM)and double-stator PMSM under different split-ratios,air-gap lengths and shaft diameters by finite element method....This paper compares the torque characteristics of single stator permanent magnet synchronous motor(PMSM)and double-stator PMSM under different split-ratios,air-gap lengths and shaft diameters by finite element method.Firstly,the effects of split-ratio towards the torque characteristics of the two motor structures under different air-gap lengths are researched,the results show that the optimal split-ratios of the two motor structures do not change under different air-gap lengths,and the optimal split-ratio of the double-stator motor is greater than that of single-stator,and the torque of the double-stator motor is greater than that of single-stator motor with arbitrary split-ratio under the same air-gap length;Finally,the effects of the shaft diameter to the torque of the two motor structures are investigated,obtaining that with the increasing of shaft diameter,the electromagnetic torque of the single-stator motor is almost unchanged,however,the torque of the double-stator is gradually reduced,when the shaft diameter reached a certain extent,the electromagnetic torque of the double-stator motor is smaller than that of single-stator motor with the split ratio within a certain range,and the torque/quality ratio of the double-stator motor is smaller than that of single-stator motor with their optimal split ratio separately.展开更多
A new control strategy named adjacent coupling error strategy is proposed to multi-motor drive system. The adjacent coupling error control scheme is developed considering the tracking speed error in one motor and the ...A new control strategy named adjacent coupling error strategy is proposed to multi-motor drive system. The adjacent coupling error control scheme is developed considering the tracking speed error in one motor and the synchronous error among adjacent motors simultaneously. In the strategy, due to non-linear effects of the two mentioned errors to the motion control of motor i, an adaptive fuzzy logic controller is designed to decide the control variable of the motor drive system. The multi-motor drive system is modeled and simulated by SIMULINK. The simulated researches show that the proposed strategy improves the synchronization, stabilization, and convergence of the multi-motor system.展开更多
The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the ap...The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the application requirements.A certain amount of pumps or motors can be formed in one shell,and these sub-pumps or sub-motors can work alone or be combined without influence on each other.So this kind of double-stator pump(motor) is called a multi-pump(multi-motor).Through the analysis of multifarious connection modes of the double-acting double-stator multi-pumps and multi-motors,the mathematical expressions of the output flow rate and the rotational speed are acquired.The results indicate that a quantity of different flow rates can be provided by one fixed-displacement multi-pump under the condition of unalterable driven speed by electromotor.Likewise,when supplied by settled input flow,without complex variable mechanism,the functions of double-speed,multiple-speed,and even differential connection can be obtained by employing the use of a double-stator multi-motor.The novel hydraulic transmission is made of such a double-stator multi-pump and multi-motor,and has broad application prospects.展开更多
A new probe for atmospheric electric field mill is introduced.It consists of three parts:signal acquisition circuit for atmospheric electric field,preamplifier circuit and phase sensitive detection circuit.The signal...A new probe for atmospheric electric field mill is introduced.It consists of three parts:signal acquisition circuit for atmospheric electric field,preamplifier circuit and phase sensitive detection circuit.The signal acquisition circuit adopts the double-stator structure to form differential input circuit,thus double-precision is obtained.Preamplifier circuit is made of current-to-voltage (I-V) conversion circuit,differential amplifier circtuit and secondary amplifying circuit.The polarity of electric field is obtained via phase sensitive detection circuit.Simulation results are obtained using Multisim,and the feasibility of the designed probe is verified.展开更多
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strate...A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.展开更多
As an important branch in the field of servo control, multi-motor coordination motion control applications are increasingly widespread.For open CNC system requirement, taking DSP as master core, combing with specific ...As an important branch in the field of servo control, multi-motor coordination motion control applications are increasingly widespread.For open CNC system requirement, taking DSP as master core, combing with specific integrated stepper motor driver chip LMDI8201T, this designed a serial communication-based new collaborative multi-motor control system, which has characters of highly integrated, good stability, real-time, convenient man-machine interface.The test results show that the system fully meet performance requirements and achieved the motion control functions.展开更多
Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by g...Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.展开更多
A theory for multi-pump and multi-motor hydraulic systems is presented in this paper based on the analysis of the advantages and disadvantages of the popular hydraulic transmission and the double-stator motor(pump).By...A theory for multi-pump and multi-motor hydraulic systems is presented in this paper based on the analysis of the advantages and disadvantages of the popular hydraulic transmission and the double-stator motor(pump).By taking the single-acting fixed displacement multi-pump and multi-motor driving system as an example,the output speeds in a variety of connections of this novel hydraulic transmission are analyzed theoretically.This research work lays a theoretical foundation for the study of the multi-pump and multi-motor driving system and for the design of the system principle diagram.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50975246)
文摘We investigated a series of novel motors and pumps with a new structure called double-stator. Double-stator can be used as pump or motor just for the working condition on demand. A certain amount of pumps or motors are formed in one shell and these subpumps or submotors can work alone or in company without influence on other pumps or moters. This kind of double-stator pumps (motors) are called multi-pumps (multi-motors). Through the analysis of multifarious connection modes of single-acting double-stator multi-pumps and multi-motors, the mathematical expressions of output flow rate, rotational speed and torque are acquired. The results indicate that different flow rates can be provided by one fixed displacement double-stator multi-pump system under the condition of an unalterable driven speed. Likewise, under the terms of a fixed input flow and without complex variable mechanisms, the functions of double speeds, multiple speeds and even differential connection can be realized by a double-stator multi-motor system with various output rotational speeds and torques.
基金supported in part by the National Natural Science Foundation of China Grant No.51877139。
文摘Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.
文摘In addition to the characteristics of a conventional motor, a novel direct-drive double-stator permanent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate. Through numerical calculation and analysis, the output torque of double-stator permanent-magnet brushless motor of the same volume as the traditional machine is discussed, and the reduction of torque ripple by using the structure features of this motor is investigated. The results indicate that lower torque ripple under the condition of ideal effective torque can be obtained by the rational design of motor. The prototype motors tested show that this kind of motor structure has a higher power density.
基金National Natural Science Foundation of China(No.50975246)
文摘A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.
文摘A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torque waveforms of the prototype motor when staggering two stators are analyzed. The method that can reduce torque ripple making use of the structure features of this motor is investigated. The results of numerical calculation and experiment indicate that designing motor with this kind of structure is a good scheme for increasing the power density.
基金supported in part by the National Natural Science Foundation of China under Grant 51977011。
文摘This paper compares the torque characteristics of single stator permanent magnet synchronous motor(PMSM)and double-stator PMSM under different split-ratios,air-gap lengths and shaft diameters by finite element method.Firstly,the effects of split-ratio towards the torque characteristics of the two motor structures under different air-gap lengths are researched,the results show that the optimal split-ratios of the two motor structures do not change under different air-gap lengths,and the optimal split-ratio of the double-stator motor is greater than that of single-stator,and the torque of the double-stator motor is greater than that of single-stator motor with arbitrary split-ratio under the same air-gap length;Finally,the effects of the shaft diameter to the torque of the two motor structures are investigated,obtaining that with the increasing of shaft diameter,the electromagnetic torque of the single-stator motor is almost unchanged,however,the torque of the double-stator is gradually reduced,when the shaft diameter reached a certain extent,the electromagnetic torque of the double-stator motor is smaller than that of single-stator motor with the split ratio within a certain range,and the torque/quality ratio of the double-stator motor is smaller than that of single-stator motor with their optimal split ratio separately.
基金National Natural Science Foundation of China (No.60774023)
文摘A new control strategy named adjacent coupling error strategy is proposed to multi-motor drive system. The adjacent coupling error control scheme is developed considering the tracking speed error in one motor and the synchronous error among adjacent motors simultaneously. In the strategy, due to non-linear effects of the two mentioned errors to the motion control of motor i, an adaptive fuzzy logic controller is designed to decide the control variable of the motor drive system. The multi-motor drive system is modeled and simulated by SIMULINK. The simulated researches show that the proposed strategy improves the synchronization, stabilization, and convergence of the multi-motor system.
基金Project(No.50975246)supported by the National Natural Science Foundation of China
文摘The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the application requirements.A certain amount of pumps or motors can be formed in one shell,and these sub-pumps or sub-motors can work alone or be combined without influence on each other.So this kind of double-stator pump(motor) is called a multi-pump(multi-motor).Through the analysis of multifarious connection modes of the double-acting double-stator multi-pumps and multi-motors,the mathematical expressions of the output flow rate and the rotational speed are acquired.The results indicate that a quantity of different flow rates can be provided by one fixed-displacement multi-pump under the condition of unalterable driven speed by electromotor.Likewise,when supplied by settled input flow,without complex variable mechanism,the functions of double-speed,multiple-speed,and even differential connection can be obtained by employing the use of a double-stator multi-motor.The novel hydraulic transmission is made of such a double-stator multi-pump and multi-motor,and has broad application prospects.
文摘A new probe for atmospheric electric field mill is introduced.It consists of three parts:signal acquisition circuit for atmospheric electric field,preamplifier circuit and phase sensitive detection circuit.The signal acquisition circuit adopts the double-stator structure to form differential input circuit,thus double-precision is obtained.Preamplifier circuit is made of current-to-voltage (I-V) conversion circuit,differential amplifier circtuit and secondary amplifying circuit.The polarity of electric field is obtained via phase sensitive detection circuit.Simulation results are obtained using Multisim,and the feasibility of the designed probe is verified.
基金supported by National Natural Science Foundation of China (No. 69774011)
文摘A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.
文摘As an important branch in the field of servo control, multi-motor coordination motion control applications are increasingly widespread.For open CNC system requirement, taking DSP as master core, combing with specific integrated stepper motor driver chip LMDI8201T, this designed a serial communication-based new collaborative multi-motor control system, which has characters of highly integrated, good stability, real-time, convenient man-machine interface.The test results show that the system fully meet performance requirements and achieved the motion control functions.
文摘Shield machine is the major technical equipment badly in need in national infrastructure construction. The service conditions of shield machine are extremely complex. The driving interface load fluctuation caused by geological environment changes and multi field coupling of stress field may lead into imbalance of redundant drive motors output torque in main driving system. Therefore, the shield machine driving synchronous control is one of the key technologies of shield machine. This paper is in view of the shield machine main driving synchronous control, achieving the system's adaptive load sharing. From the point of view of cutterhead load changes, nonlinear factors of mechanical transmission mechanism and the control system synchronization performance, the authors analyze the load sharing performance of shield machine main drive system in the event of load mutation. The paper proposes a data-driven synchronized control method applicable to the main drive system. The effectiveness of the method is verified through simulation and experimental methods. The new method can make the system synchronization error greatly reduced, thus it can effectively adapt to load mutation, and reduce shaft broken accident.
基金supported by the National Natural Science Foundation of China (Grant No. 50975246)
文摘A theory for multi-pump and multi-motor hydraulic systems is presented in this paper based on the analysis of the advantages and disadvantages of the popular hydraulic transmission and the double-stator motor(pump).By taking the single-acting fixed displacement multi-pump and multi-motor driving system as an example,the output speeds in a variety of connections of this novel hydraulic transmission are analyzed theoretically.This research work lays a theoretical foundation for the study of the multi-pump and multi-motor driving system and for the design of the system principle diagram.