Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
Nine square concrete columns including 6 CFRP/ECCs and 3 concrete columns are prepared,which have cross-section of 200 mm×200 mm and height of 600 mm.The CFRP tubes with fibers oriented at hoop direction were man...Nine square concrete columns including 6 CFRP/ECCs and 3 concrete columns are prepared,which have cross-section of 200 mm×200 mm and height of 600 mm.The CFRP tubes with fibers oriented at hoop direction were manufactured to have 3 or 5 layers of CFRP with 10 mm, 20 mm,or 40 mm rounding corner radii at vertical edges.A 100 mm overlap in the direction of fibers was provided to ensure proper bond.Uniaxial compression tests were conducted to investigate the compressive behavior.It is evident that the CFRP tube confinement can improve the behavior of concrete core,in terms of axial compressive strength or axial deformability.Test results show that the stress-strain behavior of CFRP/ECCs vary with different confinement parameters,such as the number of confinement layers and the rounding corner radius.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameter...This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.展开更多
The synergistic use of partially encased concrete and composite girders with corrugated steel webs (CGCSWs) has been proposed to avoid the buckling of corrugated steel webs and compression steel flanges under large ...The synergistic use of partially encased concrete and composite girders with corrugated steel webs (CGCSWs) has been proposed to avoid the buckling of corrugated steel webs and compression steel flanges under large combined shear force and bending moment in the hogging area. First, model tests were carried out on two specimens with different shear spans to investigate the mechanical behavior, including the load-carrying capacity, failure modes, flexural and shear stress distribution, and development of concrete cracking. Experimental results show that the interaction of shear force and bending moment causes the failure of specimens. The bending-to-shear ratio does not affect the shear stiffness of a composite girder in the elastic stage when concrete cracking does not exist, but significantly influ- ences the shear stiffness after concrete cracking. In addition, composite sections in the elastic stage sat- isfy the assumption of the plane section under combined shear force and bending moment. However, after concrete cracking in the tension field, the normal stresses of a corrugated web in the tension area become small due to the "accordion effect," with almost zero stress at the flat panels but recognizable stress at the inclined panels. Second, three-dimensional finite-element (FE) models considering material and geometric nonlinearity were built and validated by experiments, and parametric analyses were conducted on composite girders with different lengths and heights to determine their load-carrying capacity when subjected to combined loads. Finally, an interaction formula with respect to shear and flexural strength is offered on the basis of experimental and numerical results in order to evaluate the load- carrying capacity of such composite structures, thereby providing a reference for the design of partially encased composite girders with corrugated steel webs (PECGCSWs) under combined flexural and shear loads.展开更多
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
文摘Nine square concrete columns including 6 CFRP/ECCs and 3 concrete columns are prepared,which have cross-section of 200 mm×200 mm and height of 600 mm.The CFRP tubes with fibers oriented at hoop direction were manufactured to have 3 or 5 layers of CFRP with 10 mm, 20 mm,or 40 mm rounding corner radii at vertical edges.A 100 mm overlap in the direction of fibers was provided to ensure proper bond.Uniaxial compression tests were conducted to investigate the compressive behavior.It is evident that the CFRP tube confinement can improve the behavior of concrete core,in terms of axial compressive strength or axial deformability.Test results show that the stress-strain behavior of CFRP/ECCs vary with different confinement parameters,such as the number of confinement layers and the rounding corner radius.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
文摘This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.
基金The authors gratefully thank the National Natural Science Foundation of China (51308070, 51408070, and 51378080), the National Basic Research Program of China (2015CB057702), the Key Discipline Fund of Creative Project of Bridge and Tunnel Engineering (13ZDXK04) from the Changsha University of Science and Technology, the Open Fund of the Hunan Province University Key Laboratory of Bridge Engineering (13KA04), and the Applied Basic Research Program of Shanxi Province for their support,
文摘The synergistic use of partially encased concrete and composite girders with corrugated steel webs (CGCSWs) has been proposed to avoid the buckling of corrugated steel webs and compression steel flanges under large combined shear force and bending moment in the hogging area. First, model tests were carried out on two specimens with different shear spans to investigate the mechanical behavior, including the load-carrying capacity, failure modes, flexural and shear stress distribution, and development of concrete cracking. Experimental results show that the interaction of shear force and bending moment causes the failure of specimens. The bending-to-shear ratio does not affect the shear stiffness of a composite girder in the elastic stage when concrete cracking does not exist, but significantly influ- ences the shear stiffness after concrete cracking. In addition, composite sections in the elastic stage sat- isfy the assumption of the plane section under combined shear force and bending moment. However, after concrete cracking in the tension field, the normal stresses of a corrugated web in the tension area become small due to the "accordion effect," with almost zero stress at the flat panels but recognizable stress at the inclined panels. Second, three-dimensional finite-element (FE) models considering material and geometric nonlinearity were built and validated by experiments, and parametric analyses were conducted on composite girders with different lengths and heights to determine their load-carrying capacity when subjected to combined loads. Finally, an interaction formula with respect to shear and flexural strength is offered on the basis of experimental and numerical results in order to evaluate the load- carrying capacity of such composite structures, thereby providing a reference for the design of partially encased composite girders with corrugated steel webs (PECGCSWs) under combined flexural and shear loads.