This study aimed to investigate a novel slender buckling-restrained knee brace damper (BRKB) for welded and weld-free steel framing systems. The proposed BRKB adopts steel bar cores connected by a central coupler and ...This study aimed to investigate a novel slender buckling-restrained knee brace damper (BRKB) for welded and weld-free steel framing systems. The proposed BRKB adopts steel bar cores connected by a central coupler and restrained by tube buckling restrainers with a cover tube supporter. The advantages of the proposed damper include easy assembly compared to conventional buckling restrained braces, and high architectural flexibility for the retrofitting of large-span weld-free or welded steel moment-resisting systems. Specifically, by increasing the number of contraction allowances, undesirable failure mechanisms that are global instability and local buckling of the restrainer ends can be effectively suppressed because the more uniform plastic deformation of the core bar can be achieved longitudinally. In this study, displacement-controlled compression and cyclic loading tests were carried out to investigate the deformation capacities of the proposed BRKBs. Structural performance metrics associated with both loading tests, such as strength capacities, strains at the cover tubes and buckling restrainers, and hysteretic behaviors of the proposed damper under cyclic loads, were measured and discussed. Test results revealed that the geometrical characteristics of the cover tubes and adopted contraction allowances at the dampers play essential roles in their load-bearing capacities.展开更多
In this study, seven pinned double-rectangular tube assembled buckling-restrained brace (DRT-ABRB) specimens were experimentally charaeterised by means of an axial cyclic test. The core member of the specimens was a...In this study, seven pinned double-rectangular tube assembled buckling-restrained brace (DRT-ABRB) specimens were experimentally charaeterised by means of an axial cyclic test. The core member of the specimens was a single flat-plate. Two rectangular tubes were assembled using high strength bolts to form an external restraining member. Each rectangular tube was composed of an external steel channel and a cover plate. A gap or thin rubber filler was set between the core and the external restraining member to form an unbonded layer. The influence of several design parameters on the failure mode and energy dissipation capacity of the ABRB was investigated, including the height of the core wing plate, thickness of the external cover plate, and height of the external channel flange. This experimental study demonstrated that a local pressure-bearing failure at the end of the external member arises when the external cover plate is too thin or if the end construction detail is unreasonable. When the end rotations of the DRT-ABRB were restricted, the hysteretic performance was shown to be superior to that of a pure pinned DRT-ABRB. Finally, all the tested DRT-ABRBs exhibited excellent energy dissipation performance which amply satisfied existing regulation requirements.展开更多
基金supported in part by JSPS KAKENHI(NO.JP19K04711)the Mongolia−Japan Higher Engineering Education Development Project(MJEED)(Joint Research Code J16D22).
文摘This study aimed to investigate a novel slender buckling-restrained knee brace damper (BRKB) for welded and weld-free steel framing systems. The proposed BRKB adopts steel bar cores connected by a central coupler and restrained by tube buckling restrainers with a cover tube supporter. The advantages of the proposed damper include easy assembly compared to conventional buckling restrained braces, and high architectural flexibility for the retrofitting of large-span weld-free or welded steel moment-resisting systems. Specifically, by increasing the number of contraction allowances, undesirable failure mechanisms that are global instability and local buckling of the restrainer ends can be effectively suppressed because the more uniform plastic deformation of the core bar can be achieved longitudinally. In this study, displacement-controlled compression and cyclic loading tests were carried out to investigate the deformation capacities of the proposed BRKBs. Structural performance metrics associated with both loading tests, such as strength capacities, strains at the cover tubes and buckling restrainers, and hysteretic behaviors of the proposed damper under cyclic loads, were measured and discussed. Test results revealed that the geometrical characteristics of the cover tubes and adopted contraction allowances at the dampers play essential roles in their load-bearing capacities.
基金Project supported by the National Natural Science Foundation of China (Nos. 51178243 and 51608014), the China Postdoctoral Science Foundation (No. 2015M580030), and the Natural Science Foundation of Beijing, China (No. 8131002)
文摘In this study, seven pinned double-rectangular tube assembled buckling-restrained brace (DRT-ABRB) specimens were experimentally charaeterised by means of an axial cyclic test. The core member of the specimens was a single flat-plate. Two rectangular tubes were assembled using high strength bolts to form an external restraining member. Each rectangular tube was composed of an external steel channel and a cover plate. A gap or thin rubber filler was set between the core and the external restraining member to form an unbonded layer. The influence of several design parameters on the failure mode and energy dissipation capacity of the ABRB was investigated, including the height of the core wing plate, thickness of the external cover plate, and height of the external channel flange. This experimental study demonstrated that a local pressure-bearing failure at the end of the external member arises when the external cover plate is too thin or if the end construction detail is unreasonable. When the end rotations of the DRT-ABRB were restricted, the hysteretic performance was shown to be superior to that of a pure pinned DRT-ABRB. Finally, all the tested DRT-ABRBs exhibited excellent energy dissipation performance which amply satisfied existing regulation requirements.