Gene targeting technology is an important means to investigate gene functions, but its efficiency of gene targeting is very low, especially for somatic cell targeting. Artificially induced double-strand breaks (DSB)...Gene targeting technology is an important means to investigate gene functions, but its efficiency of gene targeting is very low, especially for somatic cell targeting. Artificially induced double-strand breaks (DSB) and triplex forming oligonucleotide (TFO) are currently developed methods to improve the targeting efficiency. This paper summarized the basic principles, design ideas and application in gene targeting efficiency improvement of these two methods, analyzed and com- pared their characteristics, and finally proposed prospects for their future development.展开更多
Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the he...Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the hepatocarcinogenesis.More and more researches were designed to find the relationship of the two.In this study,we investigated whether HBV DNA integration occurred at sites of DNA double-strand breaks(DSBs),one of the most detrimental DNA damage.An 18-bp I-SceI homing endonuclease recognition site was introduced into the DNA of HepG2 cell line by stable DNA transfection,then cells were incubated in patients’ serum with high HBV DNA copies and at the same time,DSBs were induced by transient expression of I-SceI after transfection of an I-SceI expression vector.By using nest PCR,the viral DNA was detected at the sites of the break.It appeared that integra-tion occurred between part of HBV x gene and the I-SceI induced breaks.The results suggested that DSBs,as the DNA damages,may serve as potential targets for hepadnaviral DNA insertion and the integrants would lead to widespread host genome changes necessarily.It provided a new site to investi-gate the integration.展开更多
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chro...Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.展开更多
The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbe...The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbent assay (ELISA) was used to quantify γH2AX, a molecular marker for DSBs, in the blood of mice after a 6-hour exposure to magnetic resonance imaging (MRI). Fourteen CF-1 female mice were separated into 4 experimental groups: Untreated negative control, MRI-treated, MRI-Control, and exposed to ionizing radiation positive control. Untreated negative control was used as a baseline for ELISA to quantify γH2AX. MRI-treated consisted of a 6-hour continuous magnetic resonance imaging (MRI) echo planar imaging (EPI) sequence with a slew rate of 192 mT/m/s constituting a significantly longer imaging time than routine clinical imaging. MRI-control mice were maintained under the same conditions outside the MRI scanner for 6-hours. Mice in the irradiation group served as a positive control of DSBs and were exposed to either 2 Gy, 5 Gy or 10 Gy of ionizing radiation. DSBs in the blood lymphocytes from the treatment groups were analyzed using the γH2AX ELISA and compared. Total protein concentration in lysates was determined for each blood sample and averaged 1 ± 0.35 mg/mL. Irradiated positive controls were used to test radiation dose-dependency of the γH2AX ELISA assay where a linear dependency on radiation exposure was observed (r<sup>2</sup> = 0.93) between untreated and irradiated samples. Mean and standard error mean of γH2AX formation were calculated and compared between each treatment group. Repeated measures 1-way ANOVA showed statistically significant differences between the means of irradiated controls and both the MRI-control and MRI-treated groups. There was no statistically significant difference between the MRI-treated samples and the MRI-control groups. Our results show that long MRI exposure at a high slew rate did not cause increased levels of γH2AX when compared to control mice, suggesting that no increase in DSBs was caused by the long MR thermometry imaging session. The novelty of this work contradicts other studies that have suggested MRI may cause DSBs;this work suggests an alternative cause of DNA damage.展开更多
Objective To explore if strand breaks of DNA in human early chorionic villus cells in uterus were induced by diagnostic ultrasound and to evaluate the method used for detection of single-stranded breaks and double-str...Objective To explore if strand breaks of DNA in human early chorionic villus cells in uterus were induced by diagnostic ultrasound and to evaluate the method used for detection of single-stranded breaks and double-stranded breaks in human DNA. Methods 60 normal pregnant women aged 20-30, who underwent artificial abortion during 6-8 weeks of gestation, were randomly divided into 2 experimental groups: All 30 cases were exposed to diagnostic ultrasound in uterus for 10 minutes, and 24 hours later chorionic villi were extracted; the other 30 cases were taken as the control group. Single-stranded DNA and double-stranded DNA in villus cells in all cases were isolated by the alkaline unwinding combined with hydroxylapatite chromatography, and were quantitatively detected using 32 P-labeled Alu probe for dot-blotting hybridization. Results There was no significant difference in quantity and percentage in single-stranded DNA and double-stranded DNA between 2 groups (P>0.05). 32 P-Alu probe could only hybridize with human DNA, and could detect DNA isolated from as few as 2.5×10 3 chorionic villus cells and 0.45ng DNA in human leukocytes. Conclusion The results suggested that there were no DNA strand damages in human chorionic villus cells when the uterus was exposed to diagnostic ultrasound for 10 minutes. The method,^(32)P-Alu probe for dot-blotting hybridization, was even more specific, sensitive and accurate than conventional approaches.展开更多
DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB r...DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.展开更多
Although mechanisms of telomere protection are well-defined in differentiated cells,how stem cells sense and respond to telomere dysfunction,in particular telomeric double-strand breaks(DSBs),is poorly characterized.H...Although mechanisms of telomere protection are well-defined in differentiated cells,how stem cells sense and respond to telomere dysfunction,in particular telomeric double-strand breaks(DSBs),is poorly characterized.Here,we report the DNA damage signaling,cell cycle,and transcriptome changes in human induced pluripotent stem cells(iPSCs)in response to telomere-internal DSBs.We engineer human iPSCs with an inducible TRF1-FokI fusion protein to acutely induce DSBs at telomeres.Using this model,we demonstrate that TRF1-FokI DSBs activate an ATR-dependent DNA damage response,which leads to p53-independent cell cycle arrest in G2.Using CRISPR–Cas9 to cripple the catalytic domain of telomerase reverse transcriptase,we show that telomerase is largely dispensable for survival and lengthening of TRF1-FokI-cleaved telomeres,which instead are effectively repaired by robust homologous recombination(HR).In contrast to HR-based telomere maintenance in mouse embryonic stem cells,where HR causes ZSCAN4-dependent extension of telomeres beyond their initial lengths,HR-based repair of telomeric breaks is sufficient to maintain iPSC telomeres at a normal length,which is compatible with sustained survival of the cells over several days of TRF1-FokI induction.Our findings suggest a previously unappreciated role for HR in telomere maintenance in telomerase-positive iPSCs and reveal distinct iPSC-specific responses to targeted telomeric DNA damage.展开更多
BACKGROUND Poly(ADP-ribose)polymerase inhibitors(PARPis)are approved as first-line therapies for breast cancer gene(BRCA)-positive,human epidermal growth factor receptor 2-negative locally advanced or metastatic breas...BACKGROUND Poly(ADP-ribose)polymerase inhibitors(PARPis)are approved as first-line therapies for breast cancer gene(BRCA)-positive,human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer.They are also effective for new and recurrent ovarian cancers that are BRCA-or homologous recombination deficiency(HRD)-positive.However,data on these mutations and PARPi use in the Middle East are limited.AIM To assess BRCA/HRD prevalence and PARPi use in patients in the Middle East with breast/ovarian cancer.METHODS This was a single-center retrospective study of 57 of 472 breast cancer patients tested for BRCA mutations,and 25 of 65 ovarian cancer patients tested for HRD.These adult patients participated in at least four visits to the oncology service at our center between August 2021 and May 2023.Data were summarized using descriptive statistics and compared using counts and percentages.Response to treatment was assessed using Response Evaluation Criteria in Solid Tumors criteria.RESULTS Among the 472 breast cancer patients,12.1%underwent BRCA testing,and 38.5%of 65 ovarian cancer patients received HRD testing.Pathogenic mutations were found in 25.6%of the tested patients:26.3%breast cancers had germline BRCA(gBRCA)mutations and 24.0%ovarian cancers showed HRD.Notably,40.0%of gBRCA-positive breast cancers and 66.0%of HRD-positive ovarian cancers were Middle Eastern and Asian patients,respectively.PARPi treatment was used in 5(33.3%)gBRCA-positive breast cancer patients as first-line therapy(n=1;7-months progression-free),for maintenance(n=2;>15-months progression-free),or at later stages due to compliance issues(n=2).Four patients(66.6%)with HRD-positive ovarian cancer received PARPi and all remained progression-free.CONCLUSION Lower testing rates but higher BRCA mutations in breast cancer were found.Ethnicity reflected United Arab Emirates demographics,with breast cancer in Middle Eastern and ovarian cancer in Asian patients.展开更多
Meiosis is an essential step in gametogenesis which is the key process in sexually reproducing organisms as meiotic aberrations may result in infertility. In meiosis, programmed DNA double-strand break (DSB) formation...Meiosis is an essential step in gametogenesis which is the key process in sexually reproducing organisms as meiotic aberrations may result in infertility. In meiosis, programmed DNA double-strand break (DSB) formation is one of the fundamental processes that are essential for maintaining homolog interactions and correcting segregation of chromosomes. Although the number and distribution of meiotic DSBs are tightly regulated, still abnormalities in DSB formation are known to cause meiotic arrest and infertility. This review is a detailed account of molecular bases of meiotic DSB formation, its evolutionary conservation, and variations in different species. We further reviewed the mutations of DSB formation genes in association with human infertility and also proposed the future directions and strategies about the study of meiotic DSB formation.展开更多
Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangi...Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown.In this review,we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology.In addition to its canonical nuclear functions in DNA damage response circuits,ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis.We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state.Finally,we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons,astrocytes,and microglial cells.展开更多
DNA double-strand breaks(DSBs)are involved in many cellular mechanisms,including replication,transcription,and genome rearrangements.The recent observation that hot spots of DSBs in human chromosomes delimit DNA domai...DNA double-strand breaks(DSBs)are involved in many cellular mechanisms,including replication,transcription,and genome rearrangements.The recent observation that hot spots of DSBs in human chromosomes delimit DNA domains that possess coordinately expressed genes suggests a strong relationship between the organization of transcription patterns and hot spots of DSBs.In this study,we performed mapping of hot spots of DSBs in a human 43-kb ribosomal DNA(rDNA)repeated unit.We observed that rDNA units corresponded to the most fragile sites in human chromosomes and that these units possessed at least nine specific regions containing clusters of extremely frequently occurring DSBs,which were located exclusively in non-coding intergenic spacer(IGS)regions.The hot spots of DSBs corresponded to only a specific subset of DNase-hypersensitive sites,and coincided with CTCF,PARP1,and HNRNPA2B1 binding sites,and H3K4me3 marks.Our rDNA-4C data indicate that the regions of IGS containing the hot spots of DSBs often form contacts with specific regions in different chromosomes,including the pericentromeric regions,as well as regions that are characterized by H3K27ac and H3K4me3 marks,CTCF binding sites,ChIA-PET and RIP signals,and high levels of DSBs.The data suggest a strong link between chromosome breakage and several different mechanisms of epigenetic regulation of gene expression.展开更多
Background It is desirable to minimize the risk of adverse radiation effects associated with percutaneous coronary intervention.The aim of this study was to determine the impact of prolonging the interval between coro...Background It is desirable to minimize the risk of adverse radiation effects associated with percutaneous coronary intervention.The aim of this study was to determine the impact of prolonging the interval between coronary angiography and percutaneous coronary intervention on X-ray-induced DNA double-strand breaks in blood lymphocytes using γ-H2AX immunofluorescence microscopy.Methods Blood samples of eight patients were taken before the first exposure to ionizing radiation,10 minutes,20 minutes,30 minutes,1 hour,and 24 hours after the last exposure to determine the γ-H2AX foci repair kinetics.Fifty-eight patients undergoing percutaneous coronary intervention were randomized to an intermittent radiation exposure group and a continuous radiation exposure group.Blood samples were taken before coronary angiography and 15 minutes after the last exposure.By enumerating γ-H2AX foci,the impact of prolonging the interval on DNA double-strand breaks was investigated.Student t-test was used to compare the difference in DNA double-strand breaks between the two groups.Results An increase in foci was found in all patients received percutaneous coronary intervention.The maximum number of γ-H2AX foci was found 10-20 minutes after the end of the last exposure.There was no statistically significant difference between the two groups in γ-H2AX foci at baseline.On average there were (0.79±0.15) γ-H2AX foci induced by interventional X-rays per lymphocyte in the continuous radiation exposure group and (0.66±0.21) in the intermittent radiation exposure group after exposure (P〈0.05).Conclusions A significant number of γ-H2AX foci develop following the percutaneous coronary intervention procedures.The number of X-ray-induced DNA double-strand breaks may be decreased by prolonging the interval time between coronary angiography and percutaneous coronary intervention to 30 minutes.展开更多
基金Supported by Shandong Swine Industry Technology System and Science and Technology Planning Program for Basic Research in Qingdao City(12-1-4-14-jch)
文摘Gene targeting technology is an important means to investigate gene functions, but its efficiency of gene targeting is very low, especially for somatic cell targeting. Artificially induced double-strand breaks (DSB) and triplex forming oligonucleotide (TFO) are currently developed methods to improve the targeting efficiency. This paper summarized the basic principles, design ideas and application in gene targeting efficiency improvement of these two methods, analyzed and com- pared their characteristics, and finally proposed prospects for their future development.
基金supported by grants from National Natural Sciences Foundation of China (No.30872237)the National Basic Research Program of China(No.2007CB512900)
文摘Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the hepatocarcinogenesis.More and more researches were designed to find the relationship of the two.In this study,we investigated whether HBV DNA integration occurred at sites of DNA double-strand breaks(DSBs),one of the most detrimental DNA damage.An 18-bp I-SceI homing endonuclease recognition site was introduced into the DNA of HepG2 cell line by stable DNA transfection,then cells were incubated in patients’ serum with high HBV DNA copies and at the same time,DSBs were induced by transient expression of I-SceI after transfection of an I-SceI expression vector.By using nest PCR,the viral DNA was detected at the sites of the break.It appeared that integra-tion occurred between part of HBV x gene and the I-SceI induced breaks.The results suggested that DSBs,as the DNA damages,may serve as potential targets for hepadnaviral DNA insertion and the integrants would lead to widespread host genome changes necessarily.It provided a new site to investi-gate the integration.
基金The authors thank Alexandra Surcel and Carey L Hendrix Lord for helpful comments on this manuscript.The work in our laboratory is supported by grants from the National Science Foundation(IBN-0077832,MCB-9896340,MCB-0092075)the National Institutes of Health(R0 1 GM63871)+3 种基金the US Department of Agriculture(2001-35301-10570 and 2003-35301-13313)Wuxing L was partially supported by the Intercollege Graduate Degree Program in Plant PhysiologyHong M gratefully acknowledges the support of the John Simon Guggenheim Foundationthe National Institutes of Health(F33 GM72245-1).
文摘Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO 11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD5 1, DMC 1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.
文摘The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbent assay (ELISA) was used to quantify γH2AX, a molecular marker for DSBs, in the blood of mice after a 6-hour exposure to magnetic resonance imaging (MRI). Fourteen CF-1 female mice were separated into 4 experimental groups: Untreated negative control, MRI-treated, MRI-Control, and exposed to ionizing radiation positive control. Untreated negative control was used as a baseline for ELISA to quantify γH2AX. MRI-treated consisted of a 6-hour continuous magnetic resonance imaging (MRI) echo planar imaging (EPI) sequence with a slew rate of 192 mT/m/s constituting a significantly longer imaging time than routine clinical imaging. MRI-control mice were maintained under the same conditions outside the MRI scanner for 6-hours. Mice in the irradiation group served as a positive control of DSBs and were exposed to either 2 Gy, 5 Gy or 10 Gy of ionizing radiation. DSBs in the blood lymphocytes from the treatment groups were analyzed using the γH2AX ELISA and compared. Total protein concentration in lysates was determined for each blood sample and averaged 1 ± 0.35 mg/mL. Irradiated positive controls were used to test radiation dose-dependency of the γH2AX ELISA assay where a linear dependency on radiation exposure was observed (r<sup>2</sup> = 0.93) between untreated and irradiated samples. Mean and standard error mean of γH2AX formation were calculated and compared between each treatment group. Repeated measures 1-way ANOVA showed statistically significant differences between the means of irradiated controls and both the MRI-control and MRI-treated groups. There was no statistically significant difference between the MRI-treated samples and the MRI-control groups. Our results show that long MRI exposure at a high slew rate did not cause increased levels of γH2AX when compared to control mice, suggesting that no increase in DSBs was caused by the long MR thermometry imaging session. The novelty of this work contradicts other studies that have suggested MRI may cause DSBs;this work suggests an alternative cause of DNA damage.
文摘Objective To explore if strand breaks of DNA in human early chorionic villus cells in uterus were induced by diagnostic ultrasound and to evaluate the method used for detection of single-stranded breaks and double-stranded breaks in human DNA. Methods 60 normal pregnant women aged 20-30, who underwent artificial abortion during 6-8 weeks of gestation, were randomly divided into 2 experimental groups: All 30 cases were exposed to diagnostic ultrasound in uterus for 10 minutes, and 24 hours later chorionic villi were extracted; the other 30 cases were taken as the control group. Single-stranded DNA and double-stranded DNA in villus cells in all cases were isolated by the alkaline unwinding combined with hydroxylapatite chromatography, and were quantitatively detected using 32 P-labeled Alu probe for dot-blotting hybridization. Results There was no significant difference in quantity and percentage in single-stranded DNA and double-stranded DNA between 2 groups (P>0.05). 32 P-Alu probe could only hybridize with human DNA, and could detect DNA isolated from as few as 2.5×10 3 chorionic villus cells and 0.45ng DNA in human leukocytes. Conclusion The results suggested that there were no DNA strand damages in human chorionic villus cells when the uterus was exposed to diagnostic ultrasound for 10 minutes. The method,^(32)P-Alu probe for dot-blotting hybridization, was even more specific, sensitive and accurate than conventional approaches.
基金supported by the National Key Research and Development Program of China(2017YFC1001102)National Natural Science Foundation of China(81760507)
文摘DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase (RAD51) focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.
基金supported by the NIH(R01HL148821 and F31CA260918)University of Pennsylvania Abramson Cancer Center(Patel Scholar Award)Pennsylvania Department of Health(Health Research Formula Fund).
文摘Although mechanisms of telomere protection are well-defined in differentiated cells,how stem cells sense and respond to telomere dysfunction,in particular telomeric double-strand breaks(DSBs),is poorly characterized.Here,we report the DNA damage signaling,cell cycle,and transcriptome changes in human induced pluripotent stem cells(iPSCs)in response to telomere-internal DSBs.We engineer human iPSCs with an inducible TRF1-FokI fusion protein to acutely induce DSBs at telomeres.Using this model,we demonstrate that TRF1-FokI DSBs activate an ATR-dependent DNA damage response,which leads to p53-independent cell cycle arrest in G2.Using CRISPR–Cas9 to cripple the catalytic domain of telomerase reverse transcriptase,we show that telomerase is largely dispensable for survival and lengthening of TRF1-FokI-cleaved telomeres,which instead are effectively repaired by robust homologous recombination(HR).In contrast to HR-based telomere maintenance in mouse embryonic stem cells,where HR causes ZSCAN4-dependent extension of telomeres beyond their initial lengths,HR-based repair of telomeric breaks is sufficient to maintain iPSC telomeres at a normal length,which is compatible with sustained survival of the cells over several days of TRF1-FokI induction.Our findings suggest a previously unappreciated role for HR in telomere maintenance in telomerase-positive iPSCs and reveal distinct iPSC-specific responses to targeted telomeric DNA damage.
文摘BACKGROUND Poly(ADP-ribose)polymerase inhibitors(PARPis)are approved as first-line therapies for breast cancer gene(BRCA)-positive,human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer.They are also effective for new and recurrent ovarian cancers that are BRCA-or homologous recombination deficiency(HRD)-positive.However,data on these mutations and PARPi use in the Middle East are limited.AIM To assess BRCA/HRD prevalence and PARPi use in patients in the Middle East with breast/ovarian cancer.METHODS This was a single-center retrospective study of 57 of 472 breast cancer patients tested for BRCA mutations,and 25 of 65 ovarian cancer patients tested for HRD.These adult patients participated in at least four visits to the oncology service at our center between August 2021 and May 2023.Data were summarized using descriptive statistics and compared using counts and percentages.Response to treatment was assessed using Response Evaluation Criteria in Solid Tumors criteria.RESULTS Among the 472 breast cancer patients,12.1%underwent BRCA testing,and 38.5%of 65 ovarian cancer patients received HRD testing.Pathogenic mutations were found in 25.6%of the tested patients:26.3%breast cancers had germline BRCA(gBRCA)mutations and 24.0%ovarian cancers showed HRD.Notably,40.0%of gBRCA-positive breast cancers and 66.0%of HRD-positive ovarian cancers were Middle Eastern and Asian patients,respectively.PARPi treatment was used in 5(33.3%)gBRCA-positive breast cancer patients as first-line therapy(n=1;7-months progression-free),for maintenance(n=2;>15-months progression-free),or at later stages due to compliance issues(n=2).Four patients(66.6%)with HRD-positive ovarian cancer received PARPi and all remained progression-free.CONCLUSION Lower testing rates but higher BRCA mutations in breast cancer were found.Ethnicity reflected United Arab Emirates demographics,with breast cancer in Middle Eastern and ovarian cancer in Asian patients.
基金This work was supported by the National Key Research and Developmental Program of China(2018YFC1003700,2018YFC1003400,and 2016YFC1000600)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB19000000)+1 种基金the National Natural Science Foundation of China(31890780,31630050,32061143006,82071709,and 31871514)the Fundamental Research Funds for the Central Universities(YD2070002006).
文摘Meiosis is an essential step in gametogenesis which is the key process in sexually reproducing organisms as meiotic aberrations may result in infertility. In meiosis, programmed DNA double-strand break (DSB) formation is one of the fundamental processes that are essential for maintaining homolog interactions and correcting segregation of chromosomes. Although the number and distribution of meiotic DSBs are tightly regulated, still abnormalities in DSB formation are known to cause meiotic arrest and infertility. This review is a detailed account of molecular bases of meiotic DSB formation, its evolutionary conservation, and variations in different species. We further reviewed the mutations of DSB formation genes in association with human infertility and also proposed the future directions and strategies about the study of meiotic DSB formation.
文摘Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown.In this review,we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology.In addition to its canonical nuclear functions in DNA damage response circuits,ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis.We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state.Finally,we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons,astrocytes,and microglial cells.
基金supported bya grant from the Molecular and Cellular Biology Program of the Russian Academy of Sciences and by grantsfrom the Russian Foundation for Basic Research(#12-04-01416-a,#12-04-01311-a,#14-04-01638-a,and#15-04-00299-a)by a President Grant for Government Support of Young Russian Scientists MK-1934.2014.4.
文摘DNA double-strand breaks(DSBs)are involved in many cellular mechanisms,including replication,transcription,and genome rearrangements.The recent observation that hot spots of DSBs in human chromosomes delimit DNA domains that possess coordinately expressed genes suggests a strong relationship between the organization of transcription patterns and hot spots of DSBs.In this study,we performed mapping of hot spots of DSBs in a human 43-kb ribosomal DNA(rDNA)repeated unit.We observed that rDNA units corresponded to the most fragile sites in human chromosomes and that these units possessed at least nine specific regions containing clusters of extremely frequently occurring DSBs,which were located exclusively in non-coding intergenic spacer(IGS)regions.The hot spots of DSBs corresponded to only a specific subset of DNase-hypersensitive sites,and coincided with CTCF,PARP1,and HNRNPA2B1 binding sites,and H3K4me3 marks.Our rDNA-4C data indicate that the regions of IGS containing the hot spots of DSBs often form contacts with specific regions in different chromosomes,including the pericentromeric regions,as well as regions that are characterized by H3K27ac and H3K4me3 marks,CTCF binding sites,ChIA-PET and RIP signals,and high levels of DSBs.The data suggest a strong link between chromosome breakage and several different mechanisms of epigenetic regulation of gene expression.
文摘Background It is desirable to minimize the risk of adverse radiation effects associated with percutaneous coronary intervention.The aim of this study was to determine the impact of prolonging the interval between coronary angiography and percutaneous coronary intervention on X-ray-induced DNA double-strand breaks in blood lymphocytes using γ-H2AX immunofluorescence microscopy.Methods Blood samples of eight patients were taken before the first exposure to ionizing radiation,10 minutes,20 minutes,30 minutes,1 hour,and 24 hours after the last exposure to determine the γ-H2AX foci repair kinetics.Fifty-eight patients undergoing percutaneous coronary intervention were randomized to an intermittent radiation exposure group and a continuous radiation exposure group.Blood samples were taken before coronary angiography and 15 minutes after the last exposure.By enumerating γ-H2AX foci,the impact of prolonging the interval on DNA double-strand breaks was investigated.Student t-test was used to compare the difference in DNA double-strand breaks between the two groups.Results An increase in foci was found in all patients received percutaneous coronary intervention.The maximum number of γ-H2AX foci was found 10-20 minutes after the end of the last exposure.There was no statistically significant difference between the two groups in γ-H2AX foci at baseline.On average there were (0.79±0.15) γ-H2AX foci induced by interventional X-rays per lymphocyte in the continuous radiation exposure group and (0.66±0.21) in the intermittent radiation exposure group after exposure (P〈0.05).Conclusions A significant number of γ-H2AX foci develop following the percutaneous coronary intervention procedures.The number of X-ray-induced DNA double-strand breaks may be decreased by prolonging the interval time between coronary angiography and percutaneous coronary intervention to 30 minutes.