期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Compact Finite Volume Scheme for the Multi-Term Time Fractional Sub-Diffusion Equation
1
作者 Baojin Su Yanan Wang +1 位作者 Jingwen Qi Yousen Li 《Journal of Applied Mathematics and Physics》 2022年第10期3156-3174,共19页
In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obt... In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction;then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally stable and convergent in L<sub>∞</sub>-norm. The convergence order is O(τ<sup>2-α</sup> + h<sup>4</sup>). Finally, two numerical examples are given to confirm the theoretical results. Some tables listed also can explain the stability and convergence of the scheme. 展开更多
关键词 Multi-Term time fractional sub-diffusion equation High-Order Compact Finite Volume Scheme Stable CONVERGENT
下载PDF
A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS 被引量:1
2
作者 Yanping Chen Qiling Gu +1 位作者 Qingfeng Li Yunqing Huang 《Journal of Computational Mathematics》 SCIE CSCD 2022年第6期936-954,共19页
In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear sys... In this paper,we develop a two-grid method(TGM)based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations.A two-grid algorithm is proposed for solving the nonlinear system,which consists of two steps:a nonlinear FE system is solved on a coarse grid,then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution.The fully discrete numerical approximation is analyzed,where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with orderα∈(1,2)andα1∈(0,1).Numerical stability and optimal error estimate O(h^(r+1)+H^(2r+2)+τ^(min{3−α,2−α1}))in L^(2)-norm are presented for two-grid scheme,where t,H and h are the time step size,coarse grid mesh size and fine grid mesh size,respectively.Finally,numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm. 展开更多
关键词 Two-grid method Finite element method Nonlinear time fractional mixed sub-diffusion and diffusion-wave equations L1-CN scheme Stability and convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部