We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our kno...We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our knowledge. The DWCNT absorber is fabricated on a hydrophilic quartz substrate by using the vertical evaporation technique. The output power is as high as 375 mW. A stable pulse train with a repetition rate of 72.26 MHz is generated with a highest single pulse energy of 5.2 μJ.展开更多
Tests of hypervelocity projectile impact on double-wall structure were performed with the front wall ranging from 0.5 mm to 2.0 mm thick and different impact velocities. Smooth particle hydrodynamics (SPH) code in LS-...Tests of hypervelocity projectile impact on double-wall structure were performed with the front wall ranging from 0.5 mm to 2.0 mm thick and different impact velocities. Smooth particle hydrodynamics (SPH) code in LS-DYNA was employed for the simulation of hypervelocity impact on the double-wall structure. By using elementary shock wave theory, the experimental results above are analyzed. The analysis can provide an explanation for the penetration mechanism of hypervelocity projectile impact on double-wall structure about the effect of front wall thickness and impact velocity..展开更多
This paper proposes the free vibration analysis of Double-Walled Carbon NanoTubes(DWCNTs).A continuum elastic three-dimensional shell model is used for natural frequency investigation of simply supported DWCNTs.The 3D...This paper proposes the free vibration analysis of Double-Walled Carbon NanoTubes(DWCNTs).A continuum elastic three-dimensional shell model is used for natural frequency investigation of simply supported DWCNTs.The 3D shell method is compared with beam analyses to show the applicability limits of 1D beam models.The effect of van der Waals interaction between the two cylinders is shown for different Carbon NanoTube(CNT)lengths and vibration modes.Results give the van der Waals interaction effect in terms of frequency values.In order to apply the 3D shell continuum model,DWCNTs are defined as two concentric isotropic cylinders(with an equivalent thickness and Young modulus)which can be linked by means of the interlaminar continuity conditions or by means of an infinitesimal fictitious layer which represents the van der Waals interaction.展开更多
Contraction joint shear keys are resilient features of gravity dams that can be considered to increase the sliding safety factors or minimise seismic residual sliding displacements,allowing costly remedial actions to ...Contraction joint shear keys are resilient features of gravity dams that can be considered to increase the sliding safety factors or minimise seismic residual sliding displacements,allowing costly remedial actions to be avoided.This paper presents a novel,robust,and computationally efficient three-dimensional(3D)modelling and simulation strategy of gravity dams,using a series of adjacent cantilever beam elements to represent individual monoliths.These monoliths are interconnected in the longitudinal direction by 3D no-tension link elements representing the lumped shear key stiffness contributions at a particular elevation.The objective is to assess the shear key internal force demands,including the axial force,shear,and moment demands.Shear key demand-capacity ratios can then be assessed with related multi-axial failure envelopes.The 3D link element stiffness coefficients were derived from a series of 3D finite element(FE)solid models with a detailed representation of geometrical features of multiple shear keys.The results from the proposed method based on advanced grillage analysis show strong agreement with reference solutions from 3D FE solid models,demonstrating high accuracy and performance of the proposed method.The application of the proposed advanced grillage method to a dam model with two monoliths clearly shows the advantage of the proposed method,in comparison to the classical approach used in practise.展开更多
Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the doub...Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the double-walled hollow carbon spheres(DWHCSs),in which N and Se atoms were doped in the carbon walls,to construct SnSe_(2)@N,Se-DWHCSs by confined growth and in-situ derivatization.The N and Sedoped DWHCSs can effectively limit the size increase of SnSe_(2),promote ion diffusion kinetics,and buffer volume expansion,which can be proved by electron microscope observation and density functional theory calculation.Consequently,the SnSe_(2)@N,Se-DWHCSs as an anode material for sodium ion batteries(SIBs)demonstrated a distinguished reversible capacity of 322.8 mAh g^(-1)at 5 A g^(-1)after 1000 cycles and a superior rate ability of 235.3 m Ah g^(-1)at an ultrahigh rate of 15 A g^(-1).Furthermore,the structure evolution and electrochemical reaction processes of SnSe2@N,Se-DWHCSs in SIBs were analyzed by exsitu methods,which confirmed the consecutive hybrid mechanism and the phase transition process.展开更多
We have studied the radiation of a double-walled carbon nanotube (DWNT) filament with a length of 4.5 mm and a diameter of 10μm by applying an electric current through the filament. The DWNT filament starts emittin...We have studied the radiation of a double-walled carbon nanotube (DWNT) filament with a length of 4.5 mm and a diameter of 10μm by applying an electric current through the filament. The DWNT filament starts emitting incandescent light at voltage U =6V. Emission spectra of the DWNT below temperature 1250K can well be fitted to those of the blackbody radiation. The intensity of the incandescent light shows an exponential dependence on the voltage applied on the DWNT filaments. The resistance of the DWNT filaments is very stable at high temperatures between 900 and 1250 K during the emission of light in the experiments.展开更多
This study explores the reasons underlying the frequent appearance of "marking problem" during the production of double-walled copper-brazed steel tubes. To this end, we compared two types of copper-coated steel str...This study explores the reasons underlying the frequent appearance of "marking problem" during the production of double-walled copper-brazed steel tubes. To this end, we compared two types of copper-coated steel strips, of which one has almost no problem during production, whereas the other has higher number of incidences of "marking problem". We analyzed the chemical composition,mechanical properties,the cross-sectional metallographs, and surface quality of the trimmed edge in both types of specimen. After the roll forming process, the bonding condition between the steel layers of the tubes before and after brazing process has also been examined. Results indicate that the chemical composition and mechanical properties of the two kinds of strips are similar; however, the edge quality of the trimmed strips is significantly different. It is believed that the irregular shape of the edge portions in the strips will be more pronounced during the bevel treatment. Consequently, smooth and tight seams cannot be guaranteed by such uneven beveled edges,which lead to higher number of incidences of "marking problem" during production.展开更多
A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of ...A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of the diesel-engine combustion system,including chamber structure,swirl ratio of cylinder head,included angle of jet orifice,number and diameter of jet orifice,fuel injection pressure and timing.The effect of double-wall jet combustion system on combustion and engine performance was tested to obtain the best performance indexes,and the double-wall jet combustion system was compared to the prototype.The results show that NOx is reduced from 712 PPm to 487 PPm at 2 100 r/min,and from 593 PPm to 369 PPm at 3 000 r/min,which are reduced by 31.6% and 37.7%,respectively.The smoke intensity was reduced form 3.67 BSU to 2.1 BSU,and the oil consumption was reduced from 240.5 g/(kW·h) to 225.4 g/(kW·h),which was decreased by 6.3% at low speed.The pressure in the cylinder was obviously reduced from 115 bar to 108 bar,which was reduced by 6%.展开更多
The pullout behavior of large-diameter collapsed double-walled carbon nanotubes(DWCNT) was studied by molecular dynamics simulations and compared with those in the circular cross-sectioned state. The pullout force-d...The pullout behavior of large-diameter collapsed double-walled carbon nanotubes(DWCNT) was studied by molecular dynamics simulations and compared with those in the circular cross-sectioned state. The pullout force-displacement curves of both are in good agreement with the same mean value of the pullout force during the steady pullout stage. The pullout force was mainly due to the formation of new surfaces; the friction between nested walls was negligible. The effects of different chiral combinations and inter-wall spacings on the pullout behavior for both section situations were investigated. The commensurate(zigzag/zigzag or armchair/armchair) bi-tube systems have a larger fluctuation in the pullout force. The smaller interspacing implies lower mean pullout force with stronger fluctuations.展开更多
The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be cha...The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method.If the coincidence length between the inner and outer tubes is long enough,the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator.The critical coincidence lengths of the oscillators are predicted by a very simple equation and then confirmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system.The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system.The vdW potential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system.So it is easier to slide over the barrier for the armchair/armchair system.The critical lengths of zigzag/zigzag DWCNTbased oscillator are found increasing along with temperature,by molecular dynamics simulations.展开更多
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat...The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61078032)the Science and Technology Funds on Solide-State Laser Laboratory of China (Grant No. 9140C0403011106)
文摘We report on a diode-pumped passively continuous wave (cw) mode-locked Tm:YAP laser with a double-wall carbon nanotube (DWCNT) absorber operating at a wavelength of 2023 nm for the first time, to the best our knowledge. The DWCNT absorber is fabricated on a hydrophilic quartz substrate by using the vertical evaporation technique. The output power is as high as 375 mW. A stable pulse train with a repetition rate of 72.26 MHz is generated with a highest single pulse energy of 5.2 μJ.
文摘Tests of hypervelocity projectile impact on double-wall structure were performed with the front wall ranging from 0.5 mm to 2.0 mm thick and different impact velocities. Smooth particle hydrodynamics (SPH) code in LS-DYNA was employed for the simulation of hypervelocity impact on the double-wall structure. By using elementary shock wave theory, the experimental results above are analyzed. The analysis can provide an explanation for the penetration mechanism of hypervelocity projectile impact on double-wall structure about the effect of front wall thickness and impact velocity..
文摘This paper proposes the free vibration analysis of Double-Walled Carbon NanoTubes(DWCNTs).A continuum elastic three-dimensional shell model is used for natural frequency investigation of simply supported DWCNTs.The 3D shell method is compared with beam analyses to show the applicability limits of 1D beam models.The effect of van der Waals interaction between the two cylinders is shown for different Carbon NanoTube(CNT)lengths and vibration modes.Results give the van der Waals interaction effect in terms of frequency values.In order to apply the 3D shell continuum model,DWCNTs are defined as two concentric isotropic cylinders(with an equivalent thickness and Young modulus)which can be linked by means of the interlaminar continuity conditions or by means of an infinitesimal fictitious layer which represents the van der Waals interaction.
文摘Contraction joint shear keys are resilient features of gravity dams that can be considered to increase the sliding safety factors or minimise seismic residual sliding displacements,allowing costly remedial actions to be avoided.This paper presents a novel,robust,and computationally efficient three-dimensional(3D)modelling and simulation strategy of gravity dams,using a series of adjacent cantilever beam elements to represent individual monoliths.These monoliths are interconnected in the longitudinal direction by 3D no-tension link elements representing the lumped shear key stiffness contributions at a particular elevation.The objective is to assess the shear key internal force demands,including the axial force,shear,and moment demands.Shear key demand-capacity ratios can then be assessed with related multi-axial failure envelopes.The 3D link element stiffness coefficients were derived from a series of 3D finite element(FE)solid models with a detailed representation of geometrical features of multiple shear keys.The results from the proposed method based on advanced grillage analysis show strong agreement with reference solutions from 3D FE solid models,demonstrating high accuracy and performance of the proposed method.The application of the proposed advanced grillage method to a dam model with two monoliths clearly shows the advantage of the proposed method,in comparison to the classical approach used in practise.
基金The funding support from the Natural Science Research Project of Jiangsu Higher Education Institutions(Grant No.21KJA530004)the 2021 Young Scientist Exchange Program between the Republic of Korea and the People’s Republic of Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the double-walled hollow carbon spheres(DWHCSs),in which N and Se atoms were doped in the carbon walls,to construct SnSe_(2)@N,Se-DWHCSs by confined growth and in-situ derivatization.The N and Sedoped DWHCSs can effectively limit the size increase of SnSe_(2),promote ion diffusion kinetics,and buffer volume expansion,which can be proved by electron microscope observation and density functional theory calculation.Consequently,the SnSe_(2)@N,Se-DWHCSs as an anode material for sodium ion batteries(SIBs)demonstrated a distinguished reversible capacity of 322.8 mAh g^(-1)at 5 A g^(-1)after 1000 cycles and a superior rate ability of 235.3 m Ah g^(-1)at an ultrahigh rate of 15 A g^(-1).Furthermore,the structure evolution and electrochemical reaction processes of SnSe2@N,Se-DWHCSs in SIBs were analyzed by exsitu methods,which confirmed the consecutive hybrid mechanism and the phase transition process.
文摘We have studied the radiation of a double-walled carbon nanotube (DWNT) filament with a length of 4.5 mm and a diameter of 10μm by applying an electric current through the filament. The DWNT filament starts emitting incandescent light at voltage U =6V. Emission spectra of the DWNT below temperature 1250K can well be fitted to those of the blackbody radiation. The intensity of the incandescent light shows an exponential dependence on the voltage applied on the DWNT filaments. The resistance of the DWNT filaments is very stable at high temperatures between 900 and 1250 K during the emission of light in the experiments.
文摘This study explores the reasons underlying the frequent appearance of "marking problem" during the production of double-walled copper-brazed steel tubes. To this end, we compared two types of copper-coated steel strips, of which one has almost no problem during production, whereas the other has higher number of incidences of "marking problem". We analyzed the chemical composition,mechanical properties,the cross-sectional metallographs, and surface quality of the trimmed edge in both types of specimen. After the roll forming process, the bonding condition between the steel layers of the tubes before and after brazing process has also been examined. Results indicate that the chemical composition and mechanical properties of the two kinds of strips are similar; however, the edge quality of the trimmed strips is significantly different. It is believed that the irregular shape of the edge portions in the strips will be more pronounced during the bevel treatment. Consequently, smooth and tight seams cannot be guaranteed by such uneven beveled edges,which lead to higher number of incidences of "marking problem" during production.
文摘A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of the diesel-engine combustion system,including chamber structure,swirl ratio of cylinder head,included angle of jet orifice,number and diameter of jet orifice,fuel injection pressure and timing.The effect of double-wall jet combustion system on combustion and engine performance was tested to obtain the best performance indexes,and the double-wall jet combustion system was compared to the prototype.The results show that NOx is reduced from 712 PPm to 487 PPm at 2 100 r/min,and from 593 PPm to 369 PPm at 3 000 r/min,which are reduced by 31.6% and 37.7%,respectively.The smoke intensity was reduced form 3.67 BSU to 2.1 BSU,and the oil consumption was reduced from 240.5 g/(kW·h) to 225.4 g/(kW·h),which was decreased by 6.3% at low speed.The pressure in the cylinder was obviously reduced from 115 bar to 108 bar,which was reduced by 6%.
文摘The pullout behavior of large-diameter collapsed double-walled carbon nanotubes(DWCNT) was studied by molecular dynamics simulations and compared with those in the circular cross-sectioned state. The pullout force-displacement curves of both are in good agreement with the same mean value of the pullout force during the steady pullout stage. The pullout force was mainly due to the formation of new surfaces; the friction between nested walls was negligible. The effects of different chiral combinations and inter-wall spacings on the pullout behavior for both section situations were investigated. The commensurate(zigzag/zigzag or armchair/armchair) bi-tube systems have a larger fluctuation in the pullout force. The smaller interspacing implies lower mean pullout force with stronger fluctuations.
基金Supported in part by the National Natural Science Foundation of China(11072108)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201028)+3 种基金the Program for New Century Excellent Talents in University(NCET-11-0832)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ13-0144)the Funding for Outstanding Doctoral Dissertation in NUAA(BCXJ13-03)the Fundamental Research Funds for the Central Universities of China
文摘The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method.If the coincidence length between the inner and outer tubes is long enough,the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator.The critical coincidence lengths of the oscillators are predicted by a very simple equation and then confirmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system.The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system.The vdW potential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system.So it is easier to slide over the barrier for the armchair/armchair system.The critical lengths of zigzag/zigzag DWCNTbased oscillator are found increasing along with temperature,by molecular dynamics simulations.
基金supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (MSIT),Korea (NRF-2021R1C1C1009200 and 2023R1A2C3007358)supported by the Defense Challengeable Future Technology Program of the Agency for Defense Development,Republic of Koreasupported by Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT) (20016588)funded by Ministry of Trade,Industry and Energy (MOTIE).
文摘The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.