The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o...The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.展开更多
Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass ...Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.展开更多
The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Rey...The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure.展开更多
Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of th...Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.展开更多
Pressure drop and compound heat transfer characteristics of a converging-diverging tube with evenly spaced twisted-tapes (CD-T tube) have been investigated experimentally. Swirl was generated by evenly spaced twiste...Pressure drop and compound heat transfer characteristics of a converging-diverging tube with evenly spaced twisted-tapes (CD-T tube) have been investigated experimentally. Swirl was generated by evenly spaced twisted-tape elements which vary in twist ratio and rotation angle. Space ratio also has an important effect on the characteristics. For comparison, experiments in a smooth circular tube and a converging-diverging (CD) tube with-out twisted-tapes were carried out. The results show that the twisted-tape with twist ratio y=4.72 and rotation angle θ=180° has the best performance among the four types of twisted-tapes presented in this paper. At Reynolds number ranging from 3400 to 20000, when space ratio s=48.6, the heat transfer efficiency index, which increases as the Reynolds number increases, is 0.85-1.21 and 1.07-1.15 compared to that of a smooth circular tube and a CD tube without twisted-tape inserts, respectively.展开更多
The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes...The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu^d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate.展开更多
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then...The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.展开更多
Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube wa...Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube was numerically investigated.Three-dimensional elliptical governing equations were solved using the finite-volume technique.For a given dimpled pitch,the effects of three different dimple heights(h/D=0.013,0.027,0.037) have been studied at different Richardson numbers(0.1,1.0 and 1.5).The generated vortex in the vicinity of the dimple destructs the thermal boundary layer and enhances the heat transfer.Therefore,lower wall temperature is seen where the dimples are located.Fluid flow velocity at the near-wall region significantly increases because of buoyancy forces with the increase of Richardson numbers.Such an acceleration at the near-wall region makes the dimples more effective at higher Richardson number.Using a dimpled tube enhances the heat transfer coefficient.However,the pressure drop is not important.For instance,in the case of Ri=1.5 and h/D=0.037,20% gains in the heat transfer enhancement only costs2.5% in the pressure loss.In general,it is recommended using a dimpled tube where the effects of buoyancy forces are important.展开更多
An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characte...An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characteristics,boiling heat transfer coefficient(HTC)increases with mass velocity of R245fa,while it decreases with the increment of saturation temperature and heat flux.With the increase of vapor quality,HTC has a maximum and the corresponding vapor quality is about 0.4,which varies with the operating conditions.When vapor quality is larger than the transition point,HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature.Among the four selected correlations,KANDLIKAR correlation matches with 91.6%of experimental data within the deviation range of±25%,and the absolute mean deviation is 11.2%.Also,in terms of frictional pressure drop characteristics of flow boiling,the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa,while it decreases with the increment of saturation temperature.MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations.It covers 84.1%of experimental data within the deviation range of±20%,and the absolute mean deviation is 10.1%.展开更多
In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans...In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.展开更多
Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experimen...Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experiment was conducted aiming at investigating the forced heat transfer characteristics of aqueous copper (Cu) nanofluid at varying concentration of Cu nano-particles in different flow regimes (300<Re≤16 000). The forced convective heat transfer enhancement is available both in the laminar and turbulent flow with increasing the concentration. Especially, the enhancement rate increases dramatically in laminar flow regime, for instance, the heat transfer coefficient of Cu/water nanofluid increases by two times at around Re=2 000 compared with that of base fluid water, and averagely increases by 62% at 1% volume fraction. However, the heat transfer coefficient of Cu/water decreases sharply in the transition flow regime. Furthermore, it has the trend that the heat transfer coefficient displays worse with increasing the concentration.展开更多
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t...A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.展开更多
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra...Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.展开更多
Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bu...Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.展开更多
Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experi...Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experiments were performed at P = 25- 34MPa, G = 450- 1800kg/(m^2·s) and q = 200 600kW/m^2. The results show that the pressure has only a moderate effect on the heat transfer of uhra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.展开更多
A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a circular tube with 45°V-baffles with isothermal wall.The computations are based on the fin...A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a circular tube with 45°V-baffles with isothermal wall.The computations are based on the finite volume method(FVM),and the SIMPLE algorithm has been implemented.The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000.To generate main longitudinal vortex flows through the tested section,V-baffles with an attack angle of 45°are mounted in tandem and in-line arrangement on the opposite positions of the circular tube.Effects of tube blockage ratio,flow direction on heat transfer and pressure drop in the tube are studied.It is apparent that a pair of longitudinal twisted vortices(P-vortex)created by a V-baffle can induce impingement on a wall of the inter-baffle cavity and lead a drastic increase in heat transfer rate at tube wall.In addition,the larger blockage ratio results in the higher Nusselt number and friction factor values.The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream,respectively.展开更多
With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the pla...With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.展开更多
In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were cond...In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.展开更多
The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to dete...The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.展开更多
基金supported by National Natural Science Foundation of China (52006242)National Natural Science Foundation of China (52192623)+1 种基金Science Foundation of China University of Petroleum,Beijing (ZX20200126)Science and technology program for strategic cooperation of CNPC–China University of Petroleum (ZLZX2020-05)。
文摘The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.
文摘Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.
基金support by the Scientific Research Start-up Funds for introducing Talent in the Sichuan University (20822041C4014)National Science and Technology Major Project of China (2017-I-0004-0004)。
文摘The flow and heat transfer characteristics of n-decane in the sub-millimeter spiral tube(SMST) at supercritical pressure(p = 3 MPa) are studied by the RNG k-ε numerical model in this paper. The effects of various Reynolds numbers(Re) and structural parameters pitch(s) and spiral diameter(D) are analyzed.Results indicate that the average Nusselt numberNu and friction factorNu increase with an increase in Re, and decrease with an increase in D/d(tube diameter). In terms of the structural parameter s/d, it is found that as s/d increases, the Nu first increase, and then decrease. and the critical structural parameter is s/d = 4. Compared with the straight tube, the SMST can improve Nu by 34.8% at best, while it can improve Nu by 102.1% at most. In addition, a comprehensive heat transfer coefficient is applied to analyze the thermodynamic properties of SMST. With the optimal structural parameters of D/d = 6 and s/d = 4, the comprehensive heat transfer factor of supercritical pressure hydrocarbon fuel in the SMST can reach 1.074. At last, correlations of the average Nusselt number and friction factor are developed to predict the flow and heat transfer of n-decane at supercritical pressure.
基金The National Natural Science Foundation of China(No.50776055,51076084)
文摘Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.
基金Supported by the State Key Development Program for Basic Research of China (No.G2000263001) and the National Natural Science Foundation of China (No.20776046).
文摘Pressure drop and compound heat transfer characteristics of a converging-diverging tube with evenly spaced twisted-tapes (CD-T tube) have been investigated experimentally. Swirl was generated by evenly spaced twisted-tape elements which vary in twist ratio and rotation angle. Space ratio also has an important effect on the characteristics. For comparison, experiments in a smooth circular tube and a converging-diverging (CD) tube with-out twisted-tapes were carried out. The results show that the twisted-tape with twist ratio y=4.72 and rotation angle θ=180° has the best performance among the four types of twisted-tapes presented in this paper. At Reynolds number ranging from 3400 to 20000, when space ratio s=48.6, the heat transfer efficiency index, which increases as the Reynolds number increases, is 0.85-1.21 and 1.07-1.15 compared to that of a smooth circular tube and a CD tube without twisted-tape inserts, respectively.
基金Supported by the Science and Technology Key Projects of Shanxi Province(2011A080804012)
文摘The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu^d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate.
文摘The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.
文摘Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube was numerically investigated.Three-dimensional elliptical governing equations were solved using the finite-volume technique.For a given dimpled pitch,the effects of three different dimple heights(h/D=0.013,0.027,0.037) have been studied at different Richardson numbers(0.1,1.0 and 1.5).The generated vortex in the vicinity of the dimple destructs the thermal boundary layer and enhances the heat transfer.Therefore,lower wall temperature is seen where the dimples are located.Fluid flow velocity at the near-wall region significantly increases because of buoyancy forces with the increase of Richardson numbers.Such an acceleration at the near-wall region makes the dimples more effective at higher Richardson number.Using a dimpled tube enhances the heat transfer coefficient.However,the pressure drop is not important.For instance,in the case of Ri=1.5 and h/D=0.037,20% gains in the heat transfer enhancement only costs2.5% in the pressure loss.In general,it is recommended using a dimpled tube where the effects of buoyancy forces are important.
基金Project(51606162)supported by the National Natural Science Foundation of ChinaProject(2018JJ2399)supported by the Natural Science Foundation of Hunan Province,China
文摘An experimental investigation on the boiling heat transfer and frictional pressure drop of R245fa in a 7 mm horizontal micro-fin tube was performed.The results show that in terms of flow boiling heat transfer characteristics,boiling heat transfer coefficient(HTC)increases with mass velocity of R245fa,while it decreases with the increment of saturation temperature and heat flux.With the increase of vapor quality,HTC has a maximum and the corresponding vapor quality is about 0.4,which varies with the operating conditions.When vapor quality is larger than the transition point,HTC can be promoted more remarkably at higher mass velocity or lower saturation temperature.Among the four selected correlations,KANDLIKAR correlation matches with 91.6%of experimental data within the deviation range of±25%,and the absolute mean deviation is 11.2%.Also,in terms of frictional pressure drop characteristics of flow boiling,the results of this study show that frictional pressure drop increases with mass velocity and heat flux of R245fa,while it decreases with the increment of saturation temperature.MULLER-STEINHAGEN-HECK correlation shows the best prediction accuracy for frictional pressure drop among the four widely used correlations.It covers 84.1%of experimental data within the deviation range of±20%,and the absolute mean deviation is 10.1%.
基金supported by the National Key R&D Program of China(No. 2020YFB1901405)
文摘In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (No.2012-0004544)
文摘Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experiment was conducted aiming at investigating the forced heat transfer characteristics of aqueous copper (Cu) nanofluid at varying concentration of Cu nano-particles in different flow regimes (300<Re≤16 000). The forced convective heat transfer enhancement is available both in the laminar and turbulent flow with increasing the concentration. Especially, the enhancement rate increases dramatically in laminar flow regime, for instance, the heat transfer coefficient of Cu/water nanofluid increases by two times at around Re=2 000 compared with that of base fluid water, and averagely increases by 62% at 1% volume fraction. However, the heat transfer coefficient of Cu/water decreases sharply in the transition flow regime. Furthermore, it has the trend that the heat transfer coefficient displays worse with increasing the concentration.
基金Supported by National Basic Research Program of China("973"Program,No.2011CB707203)
文摘A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.
文摘Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.
基金Projects(xjj2013104,08143063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011CB706606)supported by the National Basic Research Program of China
文摘Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid-structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.
基金Supported by the High Technology Research and Development Programme of China (No. 2002AA526012 )and the National Natural Science Foundation of China (No. 50323001).
文摘Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4- head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied. The experiments were performed at P = 25- 34MPa, G = 450- 1800kg/(m^2·s) and q = 200 600kW/m^2. The results show that the pressure has only a moderate effect on the heat transfer of uhra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.
基金Supported by the King Mongkut's Institute of Technology Ladkrabang research fund,Thailand(KREF015611)
文摘A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a circular tube with 45°V-baffles with isothermal wall.The computations are based on the finite volume method(FVM),and the SIMPLE algorithm has been implemented.The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000.To generate main longitudinal vortex flows through the tested section,V-baffles with an attack angle of 45°are mounted in tandem and in-line arrangement on the opposite positions of the circular tube.Effects of tube blockage ratio,flow direction on heat transfer and pressure drop in the tube are studied.It is apparent that a pair of longitudinal twisted vortices(P-vortex)created by a V-baffle can induce impingement on a wall of the inter-baffle cavity and lead a drastic increase in heat transfer rate at tube wall.In addition,the larger blockage ratio results in the higher Nusselt number and friction factor values.The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream,respectively.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA053001)
文摘With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.
文摘In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.
基金the Guangdong Provincial Scientific and Technological Development Program (2004B10201008)
文摘The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.