The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con...Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.展开更多
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this...Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings ...Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.展开更多
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Sc...Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Scientific work published within the framework of an international project DD-MET co-financed by the Research Fund for Coal and Steel(RFCS),(Grant Agreement:847338)and by the Polish Ministry of Science and Higher Education(Contract no.5073/FBWiS/19/2020/2 and 5038/FBWiS/2019/2).展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stabili...The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.展开更多
Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the inc...Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.展开更多
Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fr...Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.展开更多
Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extreme...Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extremely thick coal seams because the control mechanism of the system for the deformation of the roof and the separation between coal rock segments is not completely understood. By using the relationship between the support system and the roof strata, a mechanical model was established to calculate the deformation of the roof in a thick coal seam with bedding separation under different support conditions: with an anchor truss support and without support. On this basis, the research was used to deduce a method for computing the minimum pre-tightening forces in the anchor truss, the maximum amounts of subsidence and separation with, and without, anchor truss support under the roof, and the maximum subsidence and the decreasing amounts of the separation before and after adopting the anchor truss. Additionally, mechanical relationships between the minimum pre-tightening force and the anchoring force in the anchor were analyzed. By taking a typical roadway with thick coal roof as an example, the theoretical results mentioned above were applied in the analysis and testing of a roof supporting project in a roadway field to verify the accuracy of the theory: favorable experimental results were achieved. In addition, the relationships among other parameters were analyzed, including the minimum pre-tightening forces applied by the anchor truss, the angle of inclination of the anchor cable, and the array pitch. Meanwhile, the changing characteristics of the amounts of roof separation and subsidence with key parameters of the support system(such as array pitch, pre-tightening force, and inclination angle) were also analyzed. The research results revealed the acting mechanism of the anchor truss in control of roadway stability with a thick coal seam, providing a theoretical basis of its application in coal mining.展开更多
Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-co...Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.展开更多
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st...In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.展开更多
A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical ...A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans.展开更多
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
基金supported by the National Natural Science Foundation of China(52074013,52374179)China Huaneng Group Science and Technology Project(HNKJ20-H87)+1 种基金Natural Science Foundation of Anhui Province(2208085ME125)Hefei Comprehensive National Science Center(21KZS216),which are gratefully appreciated.
文摘Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.
基金The research was conducted as part of the“Establishing a Research Observatory to Unlock European Coal Seams for CO_(2) Storage(ROCCS)”project(Grant No.899336)The work of the second author is also sponsored by Shanghai Pujiang Program(Grant No.23PJ1412600)。
文摘Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
基金National Natural Science Foundation of China(11672333).
文摘Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology.In this work,the No.5 coal seam in the Hancheng block was taken as the research object.Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method,a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established,the fracture morphology propagation and evolution law under different conditions was investigated,and analysis of main controlling factors of fracture parameters was conducted with the combination weight method,which was based on grey incidence,analytic hierarchy process and entropy weight method.The results show that“士”-shaped fractures,T-shaped fractures,cross fractures,H-shaped fractures,and“干”-shaped fractures dominated by horizontal fractures were formed.Different parameter combinations can form different fracture morphologies.When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger,it tends to form“士”-shaped fractures.When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate,cross fractures are easily generated.Different fracture parameters have different main controlling factors.Engineering factors of perforation location,fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters.This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
文摘Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Scientific work published within the framework of an international project DD-MET co-financed by the Research Fund for Coal and Steel(RFCS),(Grant Agreement:847338)and by the Polish Ministry of Science and Higher Education(Contract no.5073/FBWiS/19/2020/2 and 5038/FBWiS/2019/2).
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
基金The Scientific Research Project under contract No.CCL2021RCPS172KQNthe Formation Mechanism and Distribution Prediction of Cenozoic Marine Source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021-KT-YXKY01+3 种基金the Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Sags in Offshore Basins of China under contract No.2021-KT-YXKY-03the National Natural Science Foundation of China(NSFC)under contract No.42372132the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.
文摘Spontaneous combustion of coal increases the temperature in adjoining overburden strata of coal seams and poses a challenge when loading blastholes.This condition,known as hot-hole blasting,is dangerous due to the increased possibility of premature explosions in loaded blastholes.Thus,it is crucial to load the blastholes with an appropriate amount of explosives within a short period to avoid premature detonation caused by high temperatures of blastholes.Additionally,it will help achieve the desired fragment size.This study tried to ascertain the most influencial variables of mean fragment size and their optimum values adopted for blasting in a fiery seam.Data on blast design,rock mass,and fragmentation of 100 blasts in fiery seams of a coal mine were collected and used to develop mean fragmentation prediction models using soft computational techniques.The coefficient of determination(R^(2)),root mean square error(RMSE),mean absolute error(MAE),mean square error(MSE),variance account for(VAF)and coefficient of efficiency in percentage(CE)were calculated to validate the results.It indicates that the random forest algorithm(RFA)outperforms the artificial neural network(ANN),response surface method(RSM),and decision tree(DT).The values of R^(2),RMSE,MAE,MSE,VAF,and CE for RFA are 0.94,0.034,0.027,0.001,93.58,and 93.01,respectively.Multiple parametric sensitivity analyses(MPSAs)of the input variables showed that the Schmidt hammer rebound number and spacing-to-burden ratio are the most influencial variables for the blast fragment size.The analysis was finally used to define the best blast design variables to achieve optimum fragment size from blasting.The optimum factor values for RFA of S/B,ld/B and ls/ld are 1.03,1.85 and 0.7,respectively.
基金support from the National Natural Science Foundation of China (Grant Nos. 51274216 and 51322404)
文摘Cleats are systematic, natural fractures in coal seams. They account for most of the permeability and much of the porosity of coalbed methane reservoirs and can have a significant effect on the success of hydraulic fracturing stimulation. Laboratory hydraulic fracturing experiments were conducted on coal blocks under true tri-axial stress to simulate fracturing stimulation of coal seams. Fractures were initiated by injecting a water gel with luminous yellow fluorescent dye into an open hole section of a wellbore. The impact of cleats on initiation and propagation of hydraulic fractures in coal seams is discussed. Three types of hydraulic fracture initiation and propagation pattern were observed in this study: 1) The hydraulic fracture initiated and then grew along the cleat. 2) The hydraulic fracture initiated along a butt cleat or a fracture (natural or induced by drilling) oriented roughly in the minimum horizontal stress direction, then turned to propagate along the first face cleat that it encountered or gradually turned towards the maximum horizontal stress direction. 3) The hydraulic fracture initiated perpendicular to the minimum stress and, when it encountered a face cleat, tended to propagate along the cleats if the extension direction does not deviate greatly (〈20° as determined in this paper) from the maximum horizontal stress direction. When a coal seam is hydraulically fractured, the resulting fracture network is controlled by the combined effect of several factors: cleats determine the initiation and extension path of the fracture, the in-situ stress state dominates the main direction of the fracture zone and bedding planes impede fracture height growth.
基金Project(51404248)supported by the National Natural Science Foundation of the Youth Science Foundation of ChinaProject(2017XKQY012)supported by Fundamental Research Funds for the Central Universities of ChinaProject(2014M551702)supported by the China Postdoctoral Science Foundation
文摘Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extremely thick coal seams because the control mechanism of the system for the deformation of the roof and the separation between coal rock segments is not completely understood. By using the relationship between the support system and the roof strata, a mechanical model was established to calculate the deformation of the roof in a thick coal seam with bedding separation under different support conditions: with an anchor truss support and without support. On this basis, the research was used to deduce a method for computing the minimum pre-tightening forces in the anchor truss, the maximum amounts of subsidence and separation with, and without, anchor truss support under the roof, and the maximum subsidence and the decreasing amounts of the separation before and after adopting the anchor truss. Additionally, mechanical relationships between the minimum pre-tightening force and the anchoring force in the anchor were analyzed. By taking a typical roadway with thick coal roof as an example, the theoretical results mentioned above were applied in the analysis and testing of a roof supporting project in a roadway field to verify the accuracy of the theory: favorable experimental results were achieved. In addition, the relationships among other parameters were analyzed, including the minimum pre-tightening forces applied by the anchor truss, the angle of inclination of the anchor cable, and the array pitch. Meanwhile, the changing characteristics of the amounts of roof separation and subsidence with key parameters of the support system(such as array pitch, pre-tightening force, and inclination angle) were also analyzed. The research results revealed the acting mechanism of the anchor truss in control of roadway stability with a thick coal seam, providing a theoretical basis of its application in coal mining.
基金supported by the Special Funding Projects of“Sanjin Scholars”Supporting Plan(Grant No.2050205)
文摘Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method.
基金Project(51104176)supported by the National Natural Science Foundation of China
文摘In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.
基金financially supported by the State Key Research Development Program of China (Nos. 2016YFC0801402, 2016YFC0600708)the National Natural Science Foundation of China (Nos. 51474219, 51304213)
文摘A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans.