As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m...As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.展开更多
An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of D...An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.展开更多
In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy u...In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.展开更多
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ...For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.展开更多
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, an...An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.展开更多
Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far fr...Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far from the load centers. Generally series compensated AC transmission and high voltage DC transmission are made use of to improve the transmission capacity as two main effective ways which can solve the problem of large scale wind power transmission. The paper describes the three kinds of impact varieties and impact mechanisms in the sub-synchronous oscillation phenomena of wind power system based on doubly fed induction generator (DFIG) wind generators. At last, we point out the important problem that should be stressed in the wind power system.展开更多
Based on Hamiltonian energy theory, this paper proposes a robust nonlinear controller for the wind turbine with doubly fed induction generator (DFIG), such that the closed-loop system can achieve its stability. Furt...Based on Hamiltonian energy theory, this paper proposes a robust nonlinear controller for the wind turbine with doubly fed induction generator (DFIG), such that the closed-loop system can achieve its stability. Furthermore, in the presence of disturbances, the closed-loop system is finite-gain L2 stable by the Hamiltonian controller. The Hamiltonian energy approach provides us a physical insight and gives a new way to the controller design. The simulation results illustrate that the proposed method is effective and has its advantage.展开更多
针对海上风电场采用柔性直流输电(voltage source converter based high voltage DC,VSC-HVDC)接入陆上电网的技术方案,提出利用直流电容和风电机组转子动能去模拟同步发电机惯量的协同控制策略。通过网侧换流器直流电压滑差控制,在电...针对海上风电场采用柔性直流输电(voltage source converter based high voltage DC,VSC-HVDC)接入陆上电网的技术方案,提出利用直流电容和风电机组转子动能去模拟同步发电机惯量的协同控制策略。通过网侧换流器直流电压滑差控制,在电网扰动下,直流电容能相应地吸收或释放能量。两端VSC交流系统频率通过风场侧换流器(wind farm VSC,WFVSC)的变频控制实现人工耦合,可以省去两端换流站之间的通信。为响应WFVSC的频率变化,风电机组功率控制器将调整功率指令值,使转子转速相应变化。通过一系列协同控制,海上风电场将参与电力系统频率控制。在允许的风电机组转速和直流电压变化范围内,该协同控制策略可提供大范围的惯量,增加系统稳定性。通过对负荷变化、风速变化和交流系统故障等工况的仿真,验证所提控制策略的有效性。展开更多
对于风电并网系统,双馈风电机组电网侧电压严重跌落容易在风机转子侧形成峰值涌流,损坏变流设备,并造成风机脱网。因此提出了模型预测转子电流控制(model predictive rotor current control,MP-RCC)与动态电压恢复器(dynamic voltage re...对于风电并网系统,双馈风电机组电网侧电压严重跌落容易在风机转子侧形成峰值涌流,损坏变流设备,并造成风机脱网。因此提出了模型预测转子电流控制(model predictive rotor current control,MP-RCC)与动态电压恢复器(dynamic voltage restorer,DVR)的协调控制策略,以提高双馈风机在故障情况下不脱网运行的能力。首先,根据双馈风电机组的工作原理,建立其预测控制状态空间模型;其次,在双馈风机转子侧施加MP-RCC,从而实现双馈风电机组低电压穿越时转子电流对参考值的迅速跟踪;最后,引入动态电压恢复器,在低电压穿越期间补偿电网压降,维持机端电压,以保证风电机组在MP-RCC控制下稳定运行。通过Matlab/Simulink对所提控制策略进行了仿真验证,结果表明,MP-RCC与DVR的协调策略可以有效应对双馈风电机组的低电压穿越过程,提高双馈风电机组的故障穿越能力。展开更多
As a typical clean and renewable energy, wind power is becoming more and more widely used in electrical industry. However, its characteristics of random and intermittent have brought serious problems to the power syst...As a typical clean and renewable energy, wind power is becoming more and more widely used in electrical industry. However, its characteristics of random and intermittent have brought serious problems to the power system, such as voltage fluctuation and insufficient reactive power. Based on the K-means clustering algorithm, this paper classifies the doubly-fed induction generators (DFIG) according to the operation of propeller pitch angle control. At the same time, to obtain the optimal parameter, advanced particle swarm optimization (PSO) is used. Then the dynamic model of DFIG under the network fault condition is built. What is more, the role that crowbar circuit plays in low voltage ride through (LVRT) is discussed. Finally, simulations in DigSILENT verify the model.展开更多
基金supported by the State Grid Science and Technology Project (Title: Technology Research On Large Scale EMT Real-time simulation customized platform, FX71-17-001)
文摘As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.
基金Project(2011DFA62240) supported by the International Scientific and Technological Cooperation Projects,ChinaProject(019945-SES6) supported by the European Union(EU)6th Framework Program UP-WIND Project,Denmark
文摘An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.
文摘In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.
文摘For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.
文摘An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.
文摘Nowadays with the improvement in the degree of emphasis on new energy, the wind power system has developed more and more rapidly over the world. Usually the wind plants are located in the remote areas which are far from the load centers. Generally series compensated AC transmission and high voltage DC transmission are made use of to improve the transmission capacity as two main effective ways which can solve the problem of large scale wind power transmission. The paper describes the three kinds of impact varieties and impact mechanisms in the sub-synchronous oscillation phenomena of wind power system based on doubly fed induction generator (DFIG) wind generators. At last, we point out the important problem that should be stressed in the wind power system.
基金supported by the National Natural Science Foundation of China(No.51007019)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Coastal Development Conservancy)
文摘Based on Hamiltonian energy theory, this paper proposes a robust nonlinear controller for the wind turbine with doubly fed induction generator (DFIG), such that the closed-loop system can achieve its stability. Furthermore, in the presence of disturbances, the closed-loop system is finite-gain L2 stable by the Hamiltonian controller. The Hamiltonian energy approach provides us a physical insight and gives a new way to the controller design. The simulation results illustrate that the proposed method is effective and has its advantage.
文摘针对海上风电场采用柔性直流输电(voltage source converter based high voltage DC,VSC-HVDC)接入陆上电网的技术方案,提出利用直流电容和风电机组转子动能去模拟同步发电机惯量的协同控制策略。通过网侧换流器直流电压滑差控制,在电网扰动下,直流电容能相应地吸收或释放能量。两端VSC交流系统频率通过风场侧换流器(wind farm VSC,WFVSC)的变频控制实现人工耦合,可以省去两端换流站之间的通信。为响应WFVSC的频率变化,风电机组功率控制器将调整功率指令值,使转子转速相应变化。通过一系列协同控制,海上风电场将参与电力系统频率控制。在允许的风电机组转速和直流电压变化范围内,该协同控制策略可提供大范围的惯量,增加系统稳定性。通过对负荷变化、风速变化和交流系统故障等工况的仿真,验证所提控制策略的有效性。
文摘对于风电并网系统,双馈风电机组电网侧电压严重跌落容易在风机转子侧形成峰值涌流,损坏变流设备,并造成风机脱网。因此提出了模型预测转子电流控制(model predictive rotor current control,MP-RCC)与动态电压恢复器(dynamic voltage restorer,DVR)的协调控制策略,以提高双馈风机在故障情况下不脱网运行的能力。首先,根据双馈风电机组的工作原理,建立其预测控制状态空间模型;其次,在双馈风机转子侧施加MP-RCC,从而实现双馈风电机组低电压穿越时转子电流对参考值的迅速跟踪;最后,引入动态电压恢复器,在低电压穿越期间补偿电网压降,维持机端电压,以保证风电机组在MP-RCC控制下稳定运行。通过Matlab/Simulink对所提控制策略进行了仿真验证,结果表明,MP-RCC与DVR的协调策略可以有效应对双馈风电机组的低电压穿越过程,提高双馈风电机组的故障穿越能力。
文摘As a typical clean and renewable energy, wind power is becoming more and more widely used in electrical industry. However, its characteristics of random and intermittent have brought serious problems to the power system, such as voltage fluctuation and insufficient reactive power. Based on the K-means clustering algorithm, this paper classifies the doubly-fed induction generators (DFIG) according to the operation of propeller pitch angle control. At the same time, to obtain the optimal parameter, advanced particle swarm optimization (PSO) is used. Then the dynamic model of DFIG under the network fault condition is built. What is more, the role that crowbar circuit plays in low voltage ride through (LVRT) is discussed. Finally, simulations in DigSILENT verify the model.