Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipp...Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators.Therefore,more considerations are needed to analyze the performances of the distance protection relays.The protection of a wind farm with distance relay is inspected.By changing the conditions of the wind farm,the characteristics of the distance relay are studied.展开更多
Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w...Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.展开更多
An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of D...An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.展开更多
To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery sys...To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.展开更多
This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction g...This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.展开更多
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m...As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.展开更多
Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy captu...Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.展开更多
This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for ...In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for wind farms, is excited on the rotor circuit by a slip-frequency current injected to the rotor, from an exciter mounted on the same shaft of the machine. The resulting rotating magnetic field rotates at synchronous speed;as such the generated power has a constant frequency independent of the shaft speed. Effects of the excitation voltage magnitude and phase angle on the active and reactive power are studied, when the machine runs at constant speed. It has been shown that by controlling the excitation voltage magnitude and phase angle would control the mode of operation of the machine;motor mode or generator mode. Furthermore, the effects of the shaft speed on the active and reactive power at constant excitation voltage magnitude and constant phase angle are also investigated.展开更多
This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor ro...This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor rotating reference frame. The two resonant controllers are tuned at slip frequencies ωslip+ and ωslip-, respectively. As a result, the positive- and negative-sequence components of the rotor current are fully regulated by the PR controller without involving the positive- and negative-sequence decomposition, which in effect improves the fault ride-through (FRT) capability of the DFIG-based wind power generation system during the period of large transient grid voltage unbalance. Correctness of the theoretical analysis and feasibility of the proposed unbalanced control scheme are validated by simulation on a 1.5-MW DFIG wind power generation system.展开更多
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ...For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.展开更多
Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a signifi...Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.展开更多
In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more prono...In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more pronounced.This may cause the system to experience small-signal instability during the fault steady-state.In this paper,multi-paralleled doubly fed induction generator(DFIG)-based wind farms(WFs)are taken as an example to study the dynamic coupling within a multi-fed system during fault steady-state of symmetrical low voltage ride-through(LVRT)in a weak grid.The analysis reveals that the dynamic coupling between WFs will introduce a damping shift to each WF.This inevitably affects the system’s dynamic stability and brings the risk of small-signal instability during fault steady-state in LVRT scenarios.Increasing the distance to fault location and fault severity will exacerbate the dynamic coupling between WFs.Because of the dynamic coupling,adjusting the control state of one WF will affect the stability of the remaining WFs in the system.Hence,a cooperative control strategy for multi-paralleled DFIG WFs is proposed to improve dynamic stability during LVRT.The analysis and the effectiveness of the proposed control strategy are verified by modal analysis and simu-lation.展开更多
Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capa...Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.展开更多
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, an...An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.展开更多
In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy u...In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.展开更多
This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations t...This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.展开更多
文摘Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators.Therefore,more considerations are needed to analyze the performances of the distance protection relays.The protection of a wind farm with distance relay is inspected.By changing the conditions of the wind farm,the characteristics of the distance relay are studied.
基金supported by the Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education(Northeast Electric Power University),Jilin 132012,China(MPSS2023-06).
文摘Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.
基金Project(2011DFA62240) supported by the International Scientific and Technological Cooperation Projects,ChinaProject(019945-SES6) supported by the European Union(EU)6th Framework Program UP-WIND Project,Denmark
文摘An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.
文摘To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid.
文摘This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.
基金supported by the State Grid Science and Technology Project (Title: Technology Research On Large Scale EMT Real-time simulation customized platform, FX71-17-001)
文摘As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.
基金Project (No.50577056) supported by the National Natural Science Foundation of China
文摘Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
文摘In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for wind farms, is excited on the rotor circuit by a slip-frequency current injected to the rotor, from an exciter mounted on the same shaft of the machine. The resulting rotating magnetic field rotates at synchronous speed;as such the generated power has a constant frequency independent of the shaft speed. Effects of the excitation voltage magnitude and phase angle on the active and reactive power are studied, when the machine runs at constant speed. It has been shown that by controlling the excitation voltage magnitude and phase angle would control the mode of operation of the machine;motor mode or generator mode. Furthermore, the effects of the shaft speed on the active and reactive power at constant excitation voltage magnitude and constant phase angle are also investigated.
基金Project (No. 50577056) supported by the National Natural ScienceFoundation of China
文摘This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor rotating reference frame. The two resonant controllers are tuned at slip frequencies ωslip+ and ωslip-, respectively. As a result, the positive- and negative-sequence components of the rotor current are fully regulated by the PR controller without involving the positive- and negative-sequence decomposition, which in effect improves the fault ride-through (FRT) capability of the DFIG-based wind power generation system during the period of large transient grid voltage unbalance. Correctness of the theoretical analysis and feasibility of the proposed unbalanced control scheme are validated by simulation on a 1.5-MW DFIG wind power generation system.
文摘For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.
基金supported by State Key Laboratory of Power Transmission Equipment and System Security(No.2007DA10512711102,No.2007DA10512709202)Program of Introducing Talents of Discipline to Universities("111"Program)(No.B08036)the Fundamental Research Funds for the Central Universities(No.CDJXS11150026)
文摘Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.
基金the National Natural Science Foundation of China(NSFC)(No.51977019)in part by the Joint Research Fund in Smart Grid under Cooperative Agreement between the National Natural Science Foundation of China(NSFC)(No.U1966208)State Grid Corporation of China(SGCC).
文摘In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more pronounced.This may cause the system to experience small-signal instability during the fault steady-state.In this paper,multi-paralleled doubly fed induction generator(DFIG)-based wind farms(WFs)are taken as an example to study the dynamic coupling within a multi-fed system during fault steady-state of symmetrical low voltage ride-through(LVRT)in a weak grid.The analysis reveals that the dynamic coupling between WFs will introduce a damping shift to each WF.This inevitably affects the system’s dynamic stability and brings the risk of small-signal instability during fault steady-state in LVRT scenarios.Increasing the distance to fault location and fault severity will exacerbate the dynamic coupling between WFs.Because of the dynamic coupling,adjusting the control state of one WF will affect the stability of the remaining WFs in the system.Hence,a cooperative control strategy for multi-paralleled DFIG WFs is proposed to improve dynamic stability during LVRT.The analysis and the effectiveness of the proposed control strategy are verified by modal analysis and simu-lation.
文摘Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.
文摘An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.
文摘In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.
文摘This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.