期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Autonomous Formation Flight Control of Large-Sized Flapping-Wing Flying Robots Based on Leader–Follower Strategy 被引量:1
1
作者 Hui Xu Yuanpeng Wang +2 位作者 Erzhen Pan Wenfu Xu Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2542-2558,共17页
Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper pr... Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment. 展开更多
关键词 BIONIC Large-sized flapping-wing flying robot HIT-Phoenix Periodic flight characteristics Formation flight Leader follower strategy
原文传递
Autonomous flight control with different strategies applied during the complete flight cycle for flapping-wing flying robots
2
作者 ZHONG SiPing WANG Song +2 位作者 XU WenFu LIU JunTao PAN ErZhen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第11期3343-3354,共12页
Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaste... Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaster rescue,and anti-terrorism explosion monitoring.However,at present,most FWFRs are operated manually.Some have a certain autonomous ability limited to the cruise stage but not the complete flight cycle.These factors make an FWFR unable to give full play to the advantages of flapping-wing flight to perform autonomous flight tasks.This paper proposed an autonomous flight control method for FWFRs covering the complete process,including the takeoff,cruise,and landing stages.First,the flight characteristics of the mechanical structure of the robot are analyzed.Then,dedicated control strategies are designed following the different control requirements of the defined stages.Furthermore,a hybrid control law is presented by combining different control strategies and objectives.Finally,the proposed method and system are validated through outdoor flight experiments of the HIT-Hawk with a wingspan of 2.3 m,in which the control algorithm is integrated with an onboard embedded controller.The experimental results show that this robot can fly autonomously during the complete flight cycle.The mean value and root mean square(RMS)of the control error are less than 0.8409 and 3.054 m,respectively,when it flies around a circle in an annular area with a radius of 25 m and a width of 10 m. 展开更多
关键词 flapping-wing flying robot autonomous flight attitude and position control outdoor flight experiments
原文传递
HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters 被引量:5
3
作者 Erzhen Pan Hui Xu +2 位作者 Han Yuan Jianqing Peng Wenfu Xu 《Biomimetic Intelligence & Robotics》 2021年第1期13-25,共13页
Inspired by large and medium-sized birds,two kinds of flapping-wing flying robots with wingspans beyond 2 meters were developed.They have the appearance of a hawk and a phoenix respectively,so they are called HIT-Hawk... Inspired by large and medium-sized birds,two kinds of flapping-wing flying robots with wingspans beyond 2 meters were developed.They have the appearance of a hawk and a phoenix respectively,so they are called HIT-Hawk and HIT-Phoenix.In this paper,the bionic concept,theoretical analysis,design and manufacturing are introduced in detail.Firstly,the flight principle and characteristics of large and medium-sized birds were summarized.Then,the aerodynamics was modeled based on the thin airfoil theory,and the main design basis was established.Secondly,the mechanical structures of HIT-Hawk and HIT-Phoenix were designed to ensure the lateral and longitudinal stability and have optimized flight performance.Moreover,an autonomous flight control method was proposed and realized in highly integrated on-onboard controller;it satisfies the strict restrictions on mass,size,power and shape.Finally,the prototypes were fabricated and verified through practical flight experiments.The wingspans of these two flapping wing aircrafts are 2.0 m and 2.3 m respectively,the take-off weights are 1.15 kg and 0.86 kg,and the maximum stable endurance is 65 min(with battery of 3S LiPo,4300 mAh)and 8 min(with battery of 3S LiPo,800 mAh).Their wind resistance can both reach level 4.Compared with the small and micro flapping-wing aerial vehicles that mimic insects or small birds,they both have strong load capacity,strong wind resistance and long endurance. 展开更多
关键词 Bionic robots flapping-wing flying Unmanned aerial vehicle robotic bird
原文传递
Extended State Observer based Attitude Control of a Bird-like Flapping-wing Flying Robot
4
作者 Keqiang Bai YunZhi Luo +4 位作者 Zhihong Dan Song Zhang Meiling Wang Qiumeng Qian Jun Zhong 《Journal of Bionic Engineering》 SCIE EI CSCD 2020年第4期708-717,共10页
The attitude control system of a flapping-wing flying robot plays an important role in the precise orientation and tracking of the robot.In this paper,the modeling of a bird-like micro flapping-wing system is introduc... The attitude control system of a flapping-wing flying robot plays an important role in the precise orientation and tracking of the robot.In this paper,the modeling of a bird-like micro flapping-wing system is introduced,and the design of a sliding mode controller based on an Extended State Observer(ESO)is described.The main design difficulties are the control law and the adaptive law for the attitude control system.To address this problem,a sliding mode adaptive extended state observer algorithm is proposed.Firstly,a new extended state approximation method is used to estimate the final output as a disturbance state.Then,a sliding mode observer with good robustness to the model approximation error and external disturbance is used to estimate the system state.Compared with traditional algorithms,this method is not only suitable for more general cases,but also effectively reduces the influence of the approximation error and interference.Next,the simulation and experiment example is given to illustrate the implementation process.The results show that the algorithm can effectively estimate the state of the attitude control system of the flapping-wing flying robot,and further guarantee the robustness of the model regarding error and external disturbance. 展开更多
关键词 BIONIC attitude control flapping-wing flying robot sliding mode adaptive control extended state observer
原文传递
Design and analysis of an untethered micro flapping robot which can glide on the water 被引量:1
5
作者 CHEN YanHong LIU YiDe +3 位作者 LIU TaiShan LI Hua QU ShaoXing YANG Wei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第8期1749-1759,共11页
Flapping-wing flying insects possess various advantages,such as high agility and efficiency.The design and manufacture of insect-scale flapping-wing micro aerial vehicle(FWMAV)have attracted increasing attention in re... Flapping-wing flying insects possess various advantages,such as high agility and efficiency.The design and manufacture of insect-scale flapping-wing micro aerial vehicle(FWMAV)have attracted increasing attention in recent decades.Due to the limitations of size and weight,the FWMAV with an onboard battery which can fully mimic insect flight has not been achieved.In this work,we design and fabricate a highly integrated flapping-wing microrobot named Robomoth.The Robomoth consists of a carbon chassis,customized power and control devices,and two piezoelectric ceramic actuators symmetrically distributed in the thorax and controlled individually.It weighs 2.487 g,spans 5.9 cm in length,possesses 9 cm of wingspan,and carries a 0.355 g rechargeable lithium battery.We demonstrate the mobility of the Robomoth through untethered gliding and making turns on the water surface.A simplified dynamic model of the flapping system is proposed to explain the relationship between the driving frequency and the flapping amplitude.The Robomoth is one new untethered bioinspired flapping-wing robot that can perform stable water surface motion,which holds potential applications such as search and rescue on the water.The robot can also provide insight for designing insect-scale flying vehicles. 展开更多
关键词 micro/nanorobots biologically inspired robots flapping-wing flying piezoelectric ceramic actuator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部