The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manu...High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.展开更多
With large-scale use of kinds of motors, oilfield drilling electrical system always accompanied by serious power quality problem, including reactive current, harmonics current and grid voltage distortion, which would ...With large-scale use of kinds of motors, oilfield drilling electrical system always accompanied by serious power quality problem, including reactive current, harmonics current and grid voltage distortion, which would greatly threaten the safety and proper working of the whole system. This paper focuses on a power quality improvement project to solve these problems. A hybrid compensating scheme, including an active compensator and a passive compensator, is carried out. Because of the specificity of oilfield drilling electrical system, compensators are redesigned against features of this application background. And then the current detection point arrangement of this hybrid system is also taken into consideration to build the whole system much more effective and reliable. Now the improvement project is already implemented in application field, and the power quality of the system is greatly improved.展开更多
A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thr...A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thread connection is described. The relative amplitude variation, change of power pulse time and energy in their propagation throughout the drilling tool are determined. A possibility of the efficient power pulse transfer along the drill string to the rock destruction tools with new nipple connections which allow automating the make-up and breakout system of drill pipe was supported by experiments.展开更多
A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, e...A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, electronic control system, test and data acquisition system, and assistant devices, such as guideway and drilling bench. Parameters of the water powered percussive rock drill can be obtained by analyzing testing data, which contain impact energy, front and back cavity pressure, pressure and flow in each working part, drilling velocity, frequency and energy efficiency etc. The system is applied to test the self-designed water powered percussive rock drill SYYG65. The parameters of water powered percussive rock drill with impact pressure of about 8.9 MPa are 58.93 J for impact energy, and 8.97% for energy efficiency, which prove the effectiveness of system.展开更多
In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel ...In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel drive shaft, achieved the perfect assemble with transmission structure of the original power unit. It could interconvert according to need by using two sets of drive shafts with direct and reverse circulation. The repacked G-3 engineering driller carried on experiment in the field test in Luanchuan molybdenum mine of Henan, whose effect was very good.展开更多
现阶段我国节能减排的具体工作逐渐展开,机械设计中节能减排的研究方向主要围绕机械元件性能提升等方面开展。本文通过数字化平台实现无纸化高效设计,减少重复性开发,提升设计效率,达到减少碳排放的目标。动力头是旋挖钻机的核心部件,...现阶段我国节能减排的具体工作逐渐展开,机械设计中节能减排的研究方向主要围绕机械元件性能提升等方面开展。本文通过数字化平台实现无纸化高效设计,减少重复性开发,提升设计效率,达到减少碳排放的目标。动力头是旋挖钻机的核心部件,具有结构紧凑、噪声小和效率高的特点。针对动力头设计中计算复杂、效率低的问题,开发了旋挖钻机数字化设计平台系统,简化设计流程,缩短设计周期。系统基于Visual Studio 2019平台开发,采用MFC(Microsoft Foundation Classes)框架C++语言编写,将参数化设计、参数传递、参数化分析、工程图管理和数据库管理划分为不同的模块进行设计,实现了零部件参数化设计、有限元分析与工程图自动生成与管理功能的集成。通过调用APDL程序语言,将命令流整合进而构建了完整的有限元分析中的建模、分析、后处理的流程,将传统较为复杂的机械设计流程用程序编写的方式集成到平台,实现部分设计参数的平台自动选取。经验证,设计与测试结果一致,提高了数字化平台的自动化水平和设计效率,通过高效的设计流程实现节能减排的目标。展开更多
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
文摘High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.
文摘With large-scale use of kinds of motors, oilfield drilling electrical system always accompanied by serious power quality problem, including reactive current, harmonics current and grid voltage distortion, which would greatly threaten the safety and proper working of the whole system. This paper focuses on a power quality improvement project to solve these problems. A hybrid compensating scheme, including an active compensator and a passive compensator, is carried out. Because of the specificity of oilfield drilling electrical system, compensators are redesigned against features of this application background. And then the current detection point arrangement of this hybrid system is also taken into consideration to build the whole system much more effective and reliable. Now the improvement project is already implemented in application field, and the power quality of the system is greatly improved.
基金supported by the research Grant within the framework of the Federal Target Program ‘Scientific and Academic Staff of Innovative Russia’ during the years of 2009–2013competitive activity 1.3.1. ‘Research conducted by young researchers, Ph.D. holders’, the project theme ‘Research of power pulse interaction in a drilling tool and in rock mass in underground borehole drilling’
文摘A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thread connection is described. The relative amplitude variation, change of power pulse time and energy in their propagation throughout the drilling tool are determined. A possibility of the efficient power pulse transfer along the drill string to the rock destruction tools with new nipple connections which allow automating the make-up and breakout system of drill pipe was supported by experiments.
基金Project(2006AA06Z134) supported by the National High Technology Research and Development Program of ChinaProjects(50934006, 50904079) supported by the National Natural Science Foundation of China
文摘A set of water powered excavation test system was developed for the comprehensive performance testing and evaluation of water powered percussive rock drill indoors. The whole system contains hydraulic power section, electronic control system, test and data acquisition system, and assistant devices, such as guideway and drilling bench. Parameters of the water powered percussive rock drill can be obtained by analyzing testing data, which contain impact energy, front and back cavity pressure, pressure and flow in each working part, drilling velocity, frequency and energy efficiency etc. The system is applied to test the self-designed water powered percussive rock drill SYYG65. The parameters of water powered percussive rock drill with impact pressure of about 8.9 MPa are 58.93 J for impact energy, and 8.97% for energy efficiency, which prove the effectiveness of system.
基金Project of Science & Technology Development Guidance of Jilin Province (No.200405033)
文摘In order to satisfy operating requirements for constant core drilling technology in reverse circulation with hollow-through DTH,the power unit of G-3 engineering driller was ameliorated. The new one with dual channel drive shaft, achieved the perfect assemble with transmission structure of the original power unit. It could interconvert according to need by using two sets of drive shafts with direct and reverse circulation. The repacked G-3 engineering driller carried on experiment in the field test in Luanchuan molybdenum mine of Henan, whose effect was very good.
文摘现阶段我国节能减排的具体工作逐渐展开,机械设计中节能减排的研究方向主要围绕机械元件性能提升等方面开展。本文通过数字化平台实现无纸化高效设计,减少重复性开发,提升设计效率,达到减少碳排放的目标。动力头是旋挖钻机的核心部件,具有结构紧凑、噪声小和效率高的特点。针对动力头设计中计算复杂、效率低的问题,开发了旋挖钻机数字化设计平台系统,简化设计流程,缩短设计周期。系统基于Visual Studio 2019平台开发,采用MFC(Microsoft Foundation Classes)框架C++语言编写,将参数化设计、参数传递、参数化分析、工程图管理和数据库管理划分为不同的模块进行设计,实现了零部件参数化设计、有限元分析与工程图自动生成与管理功能的集成。通过调用APDL程序语言,将命令流整合进而构建了完整的有限元分析中的建模、分析、后处理的流程,将传统较为复杂的机械设计流程用程序编写的方式集成到平台,实现部分设计参数的平台自动选取。经验证,设计与测试结果一致,提高了数字化平台的自动化水平和设计效率,通过高效的设计流程实现节能减排的目标。