A thunderstorm that produced severe wind, heavy rain and hail on 23 August 2001 in Beijing was studied by a three-dimensional cloud model including hail-bin microphysics. This model can provide important information f...A thunderstorm that produced severe wind, heavy rain and hail on 23 August 2001 in Beijing was studied by a three-dimensional cloud model including hail-bin microphysics. This model can provide important information for hail size at the surface, which is not available in hail parameterization cloud models. The results shows that the cloud model, using hail-bin microphysics, could reasonably reflect the storm's characteristics such as life cycle, rainfall distribution and the diameter of the hailstones and also can reproduce developing processes of downbursts, where they can then be compared with the observed features of the storm. The downburst formation mechanism was investigated based on the cloud microphysics of the simulated storm and it was found that the downburst was primarily produced by hail-loading and enhanced by cooling processes that were due to hail melting and rain evaporation. The loading and melting of hail played crucial roles in the formation of downbursts within the storm.展开更多
Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span ins...Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span insulator-line systems are derived based on the theory of cable structure.The closed-form solutions are presented and applied to predict nonlinear response including displacements and other reactions of the system subjected to a moving downburst wind in a case study.Accuracy and efficiency of the derived analytical frame are validated via comparisons with results from finite element method.展开更多
Wind loading is one of the most significant factors in civil engineering that influences the structural design considerably.In this paper,a group of manufacturing equipments for downburst simulation based on impinging...Wind loading is one of the most significant factors in civil engineering that influences the structural design considerably.In this paper,a group of manufacturing equipments for downburst simulation based on impinging jet model was developed for investigating the wind loads on structures:including the centrifugal air bellows to generate airflow,a movable platform to realize multiple locations of the building and a freely rotatable turntable to implement alterable building angles.Hundreds of transducers were used to measure the wind action on all surfaces of the building.The pressure coefficients calculated from the observed data were utilized to evaluate the downburst wind load.Pressure distributions on three prism-shaped building models with different placements and angles were investigated to obtain the maximum wind action and mean pressure coefficients.The results showed that the maximum pressure coefficient would reach 1.0 on the top surface if the downburst just broke out over the edifice.Considering that the building was in the developing field of the downburst,the top and the front surfaces would be under high wind pressure and only the back surface would endure wind suction.When the downdraft happens away from the prismatic building,all surfaces,except the front surface,would subject to suction with different degrees.It was also found that the pressure coefficient on the right surface would get its negative peak at first and then go straight up to 0.6 as the angle changed from 0°to 45°and the wind pressure on the front surface would decrease slightly through the whole process.The assertive results provide elemental data for structural wind-resistant design in civil engineering for the downburst-prone areas.展开更多
Downburst is a very dangerous weather phenomenon for aeroplane taking off or landing. In order to understand the initial formation and evolution of downburst and to study the effects of at- mospheric environment condi...Downburst is a very dangerous weather phenomenon for aeroplane taking off or landing. In order to understand the initial formation and evolution of downburst and to study the effects of at- mospheric environment condition and the microstructure of cloud-precipitation particles on the downburst development processes, we have designed and carried out a modeling scheme by making use of our own non-hydrostatic compressible mesoscale-γ model including necessary cloud-precipi- tation processes. The initial conditions of temperature, humidity and wind are from an observation case in which the downburst occurred. The results of computations demonstrate the evolution of downburst and show the variation of various environmental and microphysical parameters. Some of the mechanisms about the downburst occurrence have been obtained. Computation results may help airport forecasters to determine the occurrence of downburst better.展开更多
本文使用风廓线雷达、跑道自动观测及多普勒天气雷达等观测资料,对2020年5月14日半干旱地区兰州的一次弱天气尺度强迫下的干下击暴流(简称“5.14”)过程的发生和演变特征进行了分析;应用中尺度数值模式WRF(Weather Research and Forecas...本文使用风廓线雷达、跑道自动观测及多普勒天气雷达等观测资料,对2020年5月14日半干旱地区兰州的一次弱天气尺度强迫下的干下击暴流(简称“5.14”)过程的发生和演变特征进行了分析;应用中尺度数值模式WRF(Weather Research and Forecasting)对该次过程的形成、移动及辐散出流区上空的水凝物演变特征进行了模拟,探讨了“5.14”过程外流传播的可能机制。结果表明:“5.14”过程的生命期约为30 min,云顶高度在9 km以上。在云体移向后侧3~6 km高度,同时出现突发性干冷空气急流侵入,云体断裂,云顶崩塌,动量下传和中低空1~4 km高度辐散出流急流,是下击暴流外流发生的可能原因。雪晶碰撞过冷云滴使之冻结合并,形成了下沉及外流区域的云中霰粒子均快速增长,模拟的霰粒子混合比在下击暴流暴发时增大了105倍;下沉区霰粒子加速了云中冷池的形成,是激发强下沉气流的原因之一。随着云体的移动,强下沉气流在地面上产生辐散出流,和相邻的辐散出流间交汇引起气流间的辐合上升运动,在云体移动方向前沿的下沉气流两侧形成两个气流上升区;随着干冷入流急流的深入,在云体移动方向激发出两个垂直环流,垂直环流由一支云内上升气流与一支紧邻的湿下沉气流相伴而成。垂直环流中的湿下沉气流在近地面形成冷池扩散促使了下击暴流的暴发,激发阵风锋。阵风锋向下击暴流辐散中心的外流方向扩散,阵风锋前的暖湿上升气流有利于新生单体合并进原风暴,风暴发展加强,随着阵风锋推进切断了暖湿上升气流导致重冷云顶下沉,云顶的不断上冲和崩溃形成了下击暴流的外流传播过程。阵风锋前的上升气流输送的雨滴粒子在0°C温度层附近冻结,冻结过程中释放的热量导致外流传播过程中0°C温度层不断升高,云中下沉的霰粒子融化层升高,融化后形成的雨滴粒子在下落过程中的蒸发层增大,霰粒子融化吸热及雨水在下降过程中蒸发吸热使得近地面冷池不断增强导致地面风速在辐散传播过程中加大,是下击暴流外流传播中地面大风形成的重要原因。另一方面,上升气流通过凝结作用加热大气加强上升运动。下沉气流的发展有助于形成和维持对流特征环流及冷池。下击暴流形成后,在云体移动方向上不断形成的垂直闭合环流是下击暴流辐散中心的移动机制,由于地面冷池外流的辐合抬升作用,移动方向的上升气流区范围不断增大,垂直闭合环流受到上升气流区阻挡无法新生,同时由于云体东移,维持下击暴流垂直闭合环流结构中水凝物的循环减弱使垂直闭合环流结构消散,导致下击暴流辐散中心减弱消亡。与以往研究相比较,本次干下击暴流发生时也出现了云体后侧入流急流、雷达回波反射率因子核下降、动量下传、霰粒子含水量大及水凝物融化蒸发过程吸热形成冷池等特征,但此次干下击暴流辐散中心有明显的垂直闭合环流,是下击暴流辐散中心的启动和维持机制,同时下击暴流辐散中心与阵风锋的形成密切相关,而阵风锋过程是造成此次干下击暴流的外流传播形成地面大风的主要原因。展开更多
基金This research was jointly sponsored by the National Natural Science Foundation of China (Grant Nos. 40575003 and 40333033) the Chinese Academy of Sciences Innovation Foundation (Grant No. KZCX3-SW-213 and KZCX3-SW-225).
文摘A thunderstorm that produced severe wind, heavy rain and hail on 23 August 2001 in Beijing was studied by a three-dimensional cloud model including hail-bin microphysics. This model can provide important information for hail size at the surface, which is not available in hail parameterization cloud models. The results shows that the cloud model, using hail-bin microphysics, could reasonably reflect the storm's characteristics such as life cycle, rainfall distribution and the diameter of the hailstones and also can reproduce developing processes of downbursts, where they can then be compared with the observed features of the storm. The downburst formation mechanism was investigated based on the cloud microphysics of the simulated storm and it was found that the downburst was primarily produced by hail-loading and enhanced by cooling processes that were due to hail melting and rain evaporation. The loading and melting of hail played crucial roles in the formation of downbursts within the storm.
基金supported in part by Science and Technology Foundation of State Grid Shandong Electric Power Company(Grant No.52062518000U)National Natural Science Foundation of China(Grant Nos.51720105005 and 51478373)+1 种基金by Science and Technology Foundation of State Grid Shandong Electric Power Company(Grant No.52062518000U)National Natural Science Foundation of China(Grant Nos.51720105005 and 51478373)are greatly acknowledged.
文摘Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span insulator-line systems are derived based on the theory of cable structure.The closed-form solutions are presented and applied to predict nonlinear response including displacements and other reactions of the system subjected to a moving downburst wind in a case study.Accuracy and efficiency of the derived analytical frame are validated via comparisons with results from finite element method.
基金supported by the National Natural Science Foundation of China(Grant No.51161120359)
文摘Wind loading is one of the most significant factors in civil engineering that influences the structural design considerably.In this paper,a group of manufacturing equipments for downburst simulation based on impinging jet model was developed for investigating the wind loads on structures:including the centrifugal air bellows to generate airflow,a movable platform to realize multiple locations of the building and a freely rotatable turntable to implement alterable building angles.Hundreds of transducers were used to measure the wind action on all surfaces of the building.The pressure coefficients calculated from the observed data were utilized to evaluate the downburst wind load.Pressure distributions on three prism-shaped building models with different placements and angles were investigated to obtain the maximum wind action and mean pressure coefficients.The results showed that the maximum pressure coefficient would reach 1.0 on the top surface if the downburst just broke out over the edifice.Considering that the building was in the developing field of the downburst,the top and the front surfaces would be under high wind pressure and only the back surface would endure wind suction.When the downdraft happens away from the prismatic building,all surfaces,except the front surface,would subject to suction with different degrees.It was also found that the pressure coefficient on the right surface would get its negative peak at first and then go straight up to 0.6 as the angle changed from 0°to 45°and the wind pressure on the front surface would decrease slightly through the whole process.The assertive results provide elemental data for structural wind-resistant design in civil engineering for the downburst-prone areas.
基金The project is supported by the National Natural Science Foundation of China
文摘Downburst is a very dangerous weather phenomenon for aeroplane taking off or landing. In order to understand the initial formation and evolution of downburst and to study the effects of at- mospheric environment condition and the microstructure of cloud-precipitation particles on the downburst development processes, we have designed and carried out a modeling scheme by making use of our own non-hydrostatic compressible mesoscale-γ model including necessary cloud-precipi- tation processes. The initial conditions of temperature, humidity and wind are from an observation case in which the downburst occurred. The results of computations demonstrate the evolution of downburst and show the variation of various environmental and microphysical parameters. Some of the mechanisms about the downburst occurrence have been obtained. Computation results may help airport forecasters to determine the occurrence of downburst better.
文摘本文使用风廓线雷达、跑道自动观测及多普勒天气雷达等观测资料,对2020年5月14日半干旱地区兰州的一次弱天气尺度强迫下的干下击暴流(简称“5.14”)过程的发生和演变特征进行了分析;应用中尺度数值模式WRF(Weather Research and Forecasting)对该次过程的形成、移动及辐散出流区上空的水凝物演变特征进行了模拟,探讨了“5.14”过程外流传播的可能机制。结果表明:“5.14”过程的生命期约为30 min,云顶高度在9 km以上。在云体移向后侧3~6 km高度,同时出现突发性干冷空气急流侵入,云体断裂,云顶崩塌,动量下传和中低空1~4 km高度辐散出流急流,是下击暴流外流发生的可能原因。雪晶碰撞过冷云滴使之冻结合并,形成了下沉及外流区域的云中霰粒子均快速增长,模拟的霰粒子混合比在下击暴流暴发时增大了105倍;下沉区霰粒子加速了云中冷池的形成,是激发强下沉气流的原因之一。随着云体的移动,强下沉气流在地面上产生辐散出流,和相邻的辐散出流间交汇引起气流间的辐合上升运动,在云体移动方向前沿的下沉气流两侧形成两个气流上升区;随着干冷入流急流的深入,在云体移动方向激发出两个垂直环流,垂直环流由一支云内上升气流与一支紧邻的湿下沉气流相伴而成。垂直环流中的湿下沉气流在近地面形成冷池扩散促使了下击暴流的暴发,激发阵风锋。阵风锋向下击暴流辐散中心的外流方向扩散,阵风锋前的暖湿上升气流有利于新生单体合并进原风暴,风暴发展加强,随着阵风锋推进切断了暖湿上升气流导致重冷云顶下沉,云顶的不断上冲和崩溃形成了下击暴流的外流传播过程。阵风锋前的上升气流输送的雨滴粒子在0°C温度层附近冻结,冻结过程中释放的热量导致外流传播过程中0°C温度层不断升高,云中下沉的霰粒子融化层升高,融化后形成的雨滴粒子在下落过程中的蒸发层增大,霰粒子融化吸热及雨水在下降过程中蒸发吸热使得近地面冷池不断增强导致地面风速在辐散传播过程中加大,是下击暴流外流传播中地面大风形成的重要原因。另一方面,上升气流通过凝结作用加热大气加强上升运动。下沉气流的发展有助于形成和维持对流特征环流及冷池。下击暴流形成后,在云体移动方向上不断形成的垂直闭合环流是下击暴流辐散中心的移动机制,由于地面冷池外流的辐合抬升作用,移动方向的上升气流区范围不断增大,垂直闭合环流受到上升气流区阻挡无法新生,同时由于云体东移,维持下击暴流垂直闭合环流结构中水凝物的循环减弱使垂直闭合环流结构消散,导致下击暴流辐散中心减弱消亡。与以往研究相比较,本次干下击暴流发生时也出现了云体后侧入流急流、雷达回波反射率因子核下降、动量下传、霰粒子含水量大及水凝物融化蒸发过程吸热形成冷池等特征,但此次干下击暴流辐散中心有明显的垂直闭合环流,是下击暴流辐散中心的启动和维持机制,同时下击暴流辐散中心与阵风锋的形成密切相关,而阵风锋过程是造成此次干下击暴流的外流传播形成地面大风的主要原因。