On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed wit...On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed with AVIO and AVIS gates is presented, the main point of this rnathematical model is firstly applying a set of unsteady flow equations (St. Venant equations here) and treating the condition of gate movement as its dynamic boundary, and then deeoupling this interaction of gate movement with the change of canal flow. In this process, it is necessary to give the gateg open-loop transfer function whose input is water level deviation and output is gate discharge. The result of this simulation for a practical reach has shown it has satisfactory accuracy.展开更多
The purpose of the study is to analyze the reduction effects of multi-baffle installed for improving the scour issue of weir downstream and the study reviewed the flow reduction effect for the location of the battle a...The purpose of the study is to analyze the reduction effects of multi-baffle installed for improving the scour issue of weir downstream and the study reviewed the flow reduction effect for the location of the battle and the reduction effect associated with the baffle installation. We carried out nine cases of experiments and analyzed reduction effects through the flow rate comparison for the arrangement type of the cases. As the result of the experiment, the maximum flow rate in the weir downstream of the case 1, which has no baffle installation, is measured at 2.068 m/s due to multidirectional flow and crossing waves, and channel walls had whirlpool generation on the left and right with fast discharge flow. The maximum water level showed lower water level than when the battle was installed as there is no flow resistance. The maximum stream velocity in the weir downstream from cases 2 to 9 installed with a baffle demonstrated reduction in the maximum stream velocity than before the battle was installed and showed an increased tendency than before the baffle was installed as the maximum water level is affected by flow resistance. As the result of the comparison of the reduction effect by installing the baffle, the V type of the case 6 demonstrated the best reduction effect.展开更多
输水明渠系统控制算法主要由前馈及反馈模块组成,其中前馈模块较大程度上影响了系统控制性能。基于蓄量主动补偿的前馈控制算法受时滞参数影响较大,为比较现有多种算法实际控制性能优劣,并寻求不依赖复杂数值计算的简化时滞参数算法,该...输水明渠系统控制算法主要由前馈及反馈模块组成,其中前馈模块较大程度上影响了系统控制性能。基于蓄量主动补偿的前馈控制算法受时滞参数影响较大,为比较现有多种算法实际控制性能优劣,并寻求不依赖复杂数值计算的简化时滞参数算法,该文进行了横向的算法比较与优化开发。文章基于蓄量阶跃补偿及蓄量二次补偿2类算法,结合改进比例-积分(proportional-integral,PI)反馈控制器,对典型测试渠系及实际工程渠系建模仿真,选取稳定时间、最大超调流量、绝对值误差积分(integral of absolute magnitude of error,IAE)和绝对流量变化积分(integrated absolute discharge change,IAQ)指标分析了蓄量阶跃补偿、动力波原理、水量平衡模型3种时滞参数算法的控制效果。结果显示,在实际工程渠系中,小流量工况下,蓄量阶跃补偿算法的稳定时间比水量平衡模型算法的稳定时间减小40.42%;大流量工况下,蓄量阶跃补偿算法的最大超调流量最小,仅比目标流量高3%,该算法的稳定时间比水量平衡模型算法的稳定时间减少25.45%。结果表明蓄量阶跃补偿算法控制效果较好,但该算法在推求渠池所需蓄量补偿值时需进行水面线推求,文章依据渠道蓄量变化与流量变化间的线性关系,提出简化的时滞参数显式算法。较传统数值算法,时滞参数显式算法与蓄量阶跃补偿算法的时滞参数差值百分比小于8%,在满足实际工程需求的同时,可明显减少推求所需蓄量补偿值的计算量。文章的比较结论及所提出的简化算法对输配水渠道系统,尤其是大型渠道系统调度具有一定的理论价值和应用前景。展开更多
基金Supported by the 863 Programof China (2001AA242111)
文摘On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed with AVIO and AVIS gates is presented, the main point of this rnathematical model is firstly applying a set of unsteady flow equations (St. Venant equations here) and treating the condition of gate movement as its dynamic boundary, and then deeoupling this interaction of gate movement with the change of canal flow. In this process, it is necessary to give the gateg open-loop transfer function whose input is water level deviation and output is gate discharge. The result of this simulation for a practical reach has shown it has satisfactory accuracy.
文摘The purpose of the study is to analyze the reduction effects of multi-baffle installed for improving the scour issue of weir downstream and the study reviewed the flow reduction effect for the location of the battle and the reduction effect associated with the baffle installation. We carried out nine cases of experiments and analyzed reduction effects through the flow rate comparison for the arrangement type of the cases. As the result of the experiment, the maximum flow rate in the weir downstream of the case 1, which has no baffle installation, is measured at 2.068 m/s due to multidirectional flow and crossing waves, and channel walls had whirlpool generation on the left and right with fast discharge flow. The maximum water level showed lower water level than when the battle was installed as there is no flow resistance. The maximum stream velocity in the weir downstream from cases 2 to 9 installed with a baffle demonstrated reduction in the maximum stream velocity than before the battle was installed and showed an increased tendency than before the baffle was installed as the maximum water level is affected by flow resistance. As the result of the comparison of the reduction effect by installing the baffle, the V type of the case 6 demonstrated the best reduction effect.
文摘输水明渠系统控制算法主要由前馈及反馈模块组成,其中前馈模块较大程度上影响了系统控制性能。基于蓄量主动补偿的前馈控制算法受时滞参数影响较大,为比较现有多种算法实际控制性能优劣,并寻求不依赖复杂数值计算的简化时滞参数算法,该文进行了横向的算法比较与优化开发。文章基于蓄量阶跃补偿及蓄量二次补偿2类算法,结合改进比例-积分(proportional-integral,PI)反馈控制器,对典型测试渠系及实际工程渠系建模仿真,选取稳定时间、最大超调流量、绝对值误差积分(integral of absolute magnitude of error,IAE)和绝对流量变化积分(integrated absolute discharge change,IAQ)指标分析了蓄量阶跃补偿、动力波原理、水量平衡模型3种时滞参数算法的控制效果。结果显示,在实际工程渠系中,小流量工况下,蓄量阶跃补偿算法的稳定时间比水量平衡模型算法的稳定时间减小40.42%;大流量工况下,蓄量阶跃补偿算法的最大超调流量最小,仅比目标流量高3%,该算法的稳定时间比水量平衡模型算法的稳定时间减少25.45%。结果表明蓄量阶跃补偿算法控制效果较好,但该算法在推求渠池所需蓄量补偿值时需进行水面线推求,文章依据渠道蓄量变化与流量变化间的线性关系,提出简化的时滞参数显式算法。较传统数值算法,时滞参数显式算法与蓄量阶跃补偿算法的时滞参数差值百分比小于8%,在满足实际工程需求的同时,可明显减少推求所需蓄量补偿值的计算量。文章的比较结论及所提出的简化算法对输配水渠道系统,尤其是大型渠道系统调度具有一定的理论价值和应用前景。