Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ...Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.展开更多
In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out...In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out.This reform focuses on aspects such as“building a professional teacher team for ideological and political education,scientifically designing the ideological and political teaching system,innovating classroom teaching methods,and improving both formative and summative evaluation systems.”The“Craftsmanship in Education and Cultivating Soul and Roots”small private online course hybrid teaching reform for the Bioengineering Downstream Technology online open course provides a replicable model for the comprehensive implementation of ideological and political education in engineering courses and offers a reference for advancing ideological and political education and hybrid teaching reform in new engineering disciplines.展开更多
The petroleum industry has a complex,inflexible and challenging supply chain(SC)that impacts both the national economy as well as people’s daily lives with a range of services,including transportation,heating,electri...The petroleum industry has a complex,inflexible and challenging supply chain(SC)that impacts both the national economy as well as people’s daily lives with a range of services,including transportation,heating,electricity,lubricants,as well as chemicals and petrochemicals.In the petroleum industry,supply chain management presents several challenges,especially in the logistics sector,that are not found in other industries.In addition,logistical challenges contribute significantly to the cost of oil.Uncertainty regarding customer demand and supply significantly affects SC networks.Hence,SC flexibility can be maintained by addressing uncertainty.On the other hand,in the real world,decision-making challenges are often ambiguous or vague.In some cases,measurements are incorrect owing to measurement errors,instrument faults,etc.,which lead to a pentagonal fuzzy number(PFN)which is the extension of a fuzzy number.Therefore,it is necessary to develop quantitative models to optimize logistics operations and supply chain networks.This study proposed a linear programming model under an uncertain environment.The model minimizes the cost along the refineries,depots,multimode transport and demand nodes.Further developed pentagonal fuzzy optimization,an alternative approach is developed to solve the downstream supply chain using themixed-integer linear programming(MILP)model to obtain a feasible solution to the fuzzy transportation cost problem.In this model,the coefficient of the transportation costs and parameters is assumed to be a pentagonal fuzzy number.Furthermore,defuzzification is performed using an accuracy function.To validate the model and technique and feasibility solution,an illustrative example of the oil and gas SC is considered,providing improved results compared with existing techniques and demonstrating its ability to benefit petroleum companies is the objective of this study.展开更多
As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could h...As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.展开更多
基金the National Natural Science Foundation of China(Grant Nos.42205059 and 42005075)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA23090303 and XDB40010302)+1 种基金the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2024 and SKLCS-ZZ-2023)the Key Laboratory of Mountain Hazards and Earth Surface Processes.
文摘Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.
基金Guangdong Province Undergraduate Online Open Course Guidance Committee Research Project(2022ZXKC462)Foshan Philosophy and Social Science Planning Project(2024-GJ 037)+4 种基金Provincial First-Class Undergraduate Courses of Guangdong Provincial Education Department(Guangdong Education Gaohan[2022]No.10)Innovation Project of Guangdong Graduate Education(2022JGXM129,2022JGXM128,2023ANLK-080)Foshan University Curriculum Ideological and Political Teaching Reform and Practice Demonstration Project in 2023Quality Engineering Project of Foshan University in 2023Collaborative Education Project of the Ministry of Education in 2023(230703232312141)。
文摘In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out.This reform focuses on aspects such as“building a professional teacher team for ideological and political education,scientifically designing the ideological and political teaching system,innovating classroom teaching methods,and improving both formative and summative evaluation systems.”The“Craftsmanship in Education and Cultivating Soul and Roots”small private online course hybrid teaching reform for the Bioengineering Downstream Technology online open course provides a replicable model for the comprehensive implementation of ideological and political education in engineering courses and offers a reference for advancing ideological and political education and hybrid teaching reform in new engineering disciplines.
文摘The petroleum industry has a complex,inflexible and challenging supply chain(SC)that impacts both the national economy as well as people’s daily lives with a range of services,including transportation,heating,electricity,lubricants,as well as chemicals and petrochemicals.In the petroleum industry,supply chain management presents several challenges,especially in the logistics sector,that are not found in other industries.In addition,logistical challenges contribute significantly to the cost of oil.Uncertainty regarding customer demand and supply significantly affects SC networks.Hence,SC flexibility can be maintained by addressing uncertainty.On the other hand,in the real world,decision-making challenges are often ambiguous or vague.In some cases,measurements are incorrect owing to measurement errors,instrument faults,etc.,which lead to a pentagonal fuzzy number(PFN)which is the extension of a fuzzy number.Therefore,it is necessary to develop quantitative models to optimize logistics operations and supply chain networks.This study proposed a linear programming model under an uncertain environment.The model minimizes the cost along the refineries,depots,multimode transport and demand nodes.Further developed pentagonal fuzzy optimization,an alternative approach is developed to solve the downstream supply chain using themixed-integer linear programming(MILP)model to obtain a feasible solution to the fuzzy transportation cost problem.In this model,the coefficient of the transportation costs and parameters is assumed to be a pentagonal fuzzy number.Furthermore,defuzzification is performed using an accuracy function.To validate the model and technique and feasibility solution,an illustrative example of the oil and gas SC is considered,providing improved results compared with existing techniques and demonstrating its ability to benefit petroleum companies is the objective of this study.
文摘As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.