The teleconnection impact of the boreal winter Antarctic Oscillation(AAO) on the Somali Jet(SMJ) intensity in the following spring and summer is examined in this paper.The variability of the boreal winter AAO is p...The teleconnection impact of the boreal winter Antarctic Oscillation(AAO) on the Somali Jet(SMJ) intensity in the following spring and summer is examined in this paper.The variability of the boreal winter AAO is positively related to the SMJ intensity in both spring and summer.The analyses show that the SST in southern high and middle latitudes seems to serve as a bridge linking these two systems.When the AAO is in strong positive phase,SST over the Southern Ocean cools in the high latitudes and warms in the middle latitudes,which persists into summer;however,the variability of SST in southern high and middle latitudes is also closely correlated to SMJ intensity.A possible mechanism that links SST variability with the AAO-SMJ relationship is also discussed.The AAO in boreal winter produces an SST anomaly pattern in southern high and middle latitudes through the air-sea coupling.This AAOrelated SST anomaly pattern modulates the local Ferrel cell anomaly in summer,followed by the regional Hadley cell anomaly in tropics.The anomalous vertical motion in tropics then changes the land-sea thermal contrast between the tropical Indian Ocean and the Asian continent through the variability of low cloud cover and downward surface longwave radiation flux.Finally,the land-sea thermal contrast anomaly between the tropical Indian Ocean and the Asian continent changes the SMJ intensity.The results from Community Atmosphere Model experiments forced by the SST anomaly in southern high and middle latitudes also confirm this diagnostic physical process to some extent.展开更多
The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequen...The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.展开更多
本文将NASA(National Aeronautics and Space Administration)/Goddard长波辐射方案引入到GRAPES_Meso(Global/Regional Assimilation and PrEdiction System Meso)模式中,对2006年4月中国地区进行了一个月的模拟试验,并与相应的NCEP(Na...本文将NASA(National Aeronautics and Space Administration)/Goddard长波辐射方案引入到GRAPES_Meso(Global/Regional Assimilation and PrEdiction System Meso)模式中,对2006年4月中国地区进行了一个月的模拟试验,并与相应的NCEP(National Centers for Environmental Prediction)再分析资料进行了对比分析。试验结果表明:在模拟区域内,使用GRAPES Meso模式进行24h、48 h预报得到的晴空大气顶向外长波辐射通量(the clear sky outgoing longwave radiation flux,OLRC)、地面接收到向下长波辐射通量(the clear sky downward longwave radiation flux at ground,GLWC)分布形势与NCEP再分析资料具有较好的对应关系;模式预报24 h、48 h OLRC和NCEP再分析资料月平均误差百分比控制在-10%^+10%以内,GLWC月平均误差百分比比OLRC略大,但总体上两者误差都在合理和可接受范围之内。OLRC和GLWC 24 h、48 h的预报和NCEP再分析资料的逐日距平相关系数及标准误差的对比显示,模式24 h预报OLRC、GLWC的距平相关系数月平均值分别为0.96、0.98,标准误差月平均值分别为24.54 W m^(-2)、27.23 W m^(-2);模式48 h预报OLRC、GLWC的距平相关系数月平均值分别为0.9521、0.9804,标准误差月平均值分别为22.43 W m^(-2)、27.64W m^(-2)。总体上,模式24 h、48 h预报OLRC和GLWC的距平相关系数都在0.93以上,标准误差都在31 W m^(-2)以内,且GLWC预报和NCEP再分析资料的相关性比OLRC略好,OLRC预报与NCEP再分析资料的的标准误差比GLWC略小。通过和RRTM长波辐射方案对比可知,两者的预报水平基本一致。本文研究结果表明,引入NASA/Goddard长波辐射方案后的GRAPES_Meso模式整体上能够较好地预报OLRC和GLWC,该辐射方案可以作为模式GRAPES_Meso的备选辐射方案之一。展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 41175051 and 41490642)the National Basic Research and Development (973) Program of China (Grant No. 2012CB957804)+1 种基金the Postgraduate Science and Technology Innovation Project of Jiangsu Province (Grant No. CXZZ13 0517)the financial support of the China Scholarship Council (CSC)
文摘The teleconnection impact of the boreal winter Antarctic Oscillation(AAO) on the Somali Jet(SMJ) intensity in the following spring and summer is examined in this paper.The variability of the boreal winter AAO is positively related to the SMJ intensity in both spring and summer.The analyses show that the SST in southern high and middle latitudes seems to serve as a bridge linking these two systems.When the AAO is in strong positive phase,SST over the Southern Ocean cools in the high latitudes and warms in the middle latitudes,which persists into summer;however,the variability of SST in southern high and middle latitudes is also closely correlated to SMJ intensity.A possible mechanism that links SST variability with the AAO-SMJ relationship is also discussed.The AAO in boreal winter produces an SST anomaly pattern in southern high and middle latitudes through the air-sea coupling.This AAOrelated SST anomaly pattern modulates the local Ferrel cell anomaly in summer,followed by the regional Hadley cell anomaly in tropics.The anomalous vertical motion in tropics then changes the land-sea thermal contrast between the tropical Indian Ocean and the Asian continent through the variability of low cloud cover and downward surface longwave radiation flux.Finally,the land-sea thermal contrast anomaly between the tropical Indian Ocean and the Asian continent changes the SMJ intensity.The results from Community Atmosphere Model experiments forced by the SST anomaly in southern high and middle latitudes also confirm this diagnostic physical process to some extent.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42075028 and 42222502)the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant SML2021SP302)
文摘The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.
文摘本文将NASA(National Aeronautics and Space Administration)/Goddard长波辐射方案引入到GRAPES_Meso(Global/Regional Assimilation and PrEdiction System Meso)模式中,对2006年4月中国地区进行了一个月的模拟试验,并与相应的NCEP(National Centers for Environmental Prediction)再分析资料进行了对比分析。试验结果表明:在模拟区域内,使用GRAPES Meso模式进行24h、48 h预报得到的晴空大气顶向外长波辐射通量(the clear sky outgoing longwave radiation flux,OLRC)、地面接收到向下长波辐射通量(the clear sky downward longwave radiation flux at ground,GLWC)分布形势与NCEP再分析资料具有较好的对应关系;模式预报24 h、48 h OLRC和NCEP再分析资料月平均误差百分比控制在-10%^+10%以内,GLWC月平均误差百分比比OLRC略大,但总体上两者误差都在合理和可接受范围之内。OLRC和GLWC 24 h、48 h的预报和NCEP再分析资料的逐日距平相关系数及标准误差的对比显示,模式24 h预报OLRC、GLWC的距平相关系数月平均值分别为0.96、0.98,标准误差月平均值分别为24.54 W m^(-2)、27.23 W m^(-2);模式48 h预报OLRC、GLWC的距平相关系数月平均值分别为0.9521、0.9804,标准误差月平均值分别为22.43 W m^(-2)、27.64W m^(-2)。总体上,模式24 h、48 h预报OLRC和GLWC的距平相关系数都在0.93以上,标准误差都在31 W m^(-2)以内,且GLWC预报和NCEP再分析资料的相关性比OLRC略好,OLRC预报与NCEP再分析资料的的标准误差比GLWC略小。通过和RRTM长波辐射方案对比可知,两者的预报水平基本一致。本文研究结果表明,引入NASA/Goddard长波辐射方案后的GRAPES_Meso模式整体上能够较好地预报OLRC和GLWC,该辐射方案可以作为模式GRAPES_Meso的备选辐射方案之一。