In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit...In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.展开更多
The nth-order expansion of the parabolized stability equation (EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation (LPSE) in the streamwise direction. The EPSE together with t...The nth-order expansion of the parabolized stability equation (EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation (LPSE) in the streamwise direction. The EPSE together with the homogeneous boundary conditions forms a local eigenvalue problem, in which the streamwise variations of the mean flow and the disturbance shape function are considered. The first-order EPSE (EPSE1) and the second-order EPSE (EPSE2) are used to study the crossflow instability in the swept NLF(2)-0415 wing boundary layer. The non-parallelism degree of the boundary layer is strong. Compared with the growth rates predicted by the linear stability theory (LST), the results given by the EPSE1 and EPSE2 agree well with those given by the LPSE. In particular, the results given by the EPSE2 are almost the same as those given by the LPSE. The prediction of the EPSE1 is more accurate than the prediction of the LST, and is more efficient than the predictions of the EPSE2 and LPSE. Therefore, the EPSE1 is an efficient ey prediction tool for the crossflow instability in swept-wing boundary-layer flows.展开更多
Crossflow instability plays very important role in the transition of the boundary layer on a swept wing, typical in the engineering applications. Experiments revealed that the linear stability theory well predicted th...Crossflow instability plays very important role in the transition of the boundary layer on a swept wing, typical in the engineering applications. Experiments revealed that the linear stability theory well predicted the form of the crossflow vortices, but usually much overpredicted their growth rate. Using nonlinear theory of hydrodynamic stability, combined with some other considerations, we were able to obtain the growth rate in good agreement with experimental observations.展开更多
Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-d...Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-dimensional problems are so high that it is often too expensive to prepare sufficient samples.Therefore,transfer learning has become a promising approach to reuse well-trained two-dimensional models and greatly reduce the need for samples for threedimensional problems.This paper proposes to reuse the baseline models trained on supercritical airfoils to predict finite-span swept supercritical wings,where the simple swept theory is embedded to improve the prediction accuracy.Two baseline models are investigated:one is commonly referred to as the forward problem of predicting the pressure coefficient distribution based on the geometry,and the other is the inverse problem that predicts the geometry based on the pressure coefficient distribution.Two transfer learning strategies are compared for both baseline models.The transferred models are then tested on complete wings.The results show that transfer learning requires only approximately 500 wing samples to achieve good prediction accuracy on different wing planforms and different free stream conditions.Compared to the two baseline models,the transferred models reduce the prediction error by 60%and 80%,respectively.展开更多
Scallop ice is a special phenomenon that occurs during swept wing aircraft passing through icing clouds.It poses a great challenge for the icing safety assessment that the complex scallop ice shape feature and its mec...Scallop ice is a special phenomenon that occurs during swept wing aircraft passing through icing clouds.It poses a great challenge for the icing safety assessment that the complex scallop ice shape feature and its mechanism are still unclear.In this work,a large-scale icing wind tunnel experiment of swept wing designed by NACA0012 airfoil is conducted in the Icing Wind Tunnel of China Aerodynamics Research and Development Center.The detailed three-dimensional ice shapes under 0°,15°,30°and 45°swept angles are obtained by laser scanning technology.The experimental results show that with the swept angle increasing from 0°to 45°,the 2D double ice horn structures show certain spanwise variation,and finally transform into complete scallop ice with ice thickness greatly enhanced in the stagnation line region.The empirical mode decomposition of the spanwise ice curve captures the high-frequency fluctuation on the scallop ice caused by the small-scale roughness element,while the trend with low frequency is not obvious.Based on the experimental data,a new complete scallop ice geometric model,named 5Points-5Lines-2Arcs(5P-5L-2A)model,is proposed,which can provide important basis for the quantitative description of complex scallop ice shape.展开更多
文摘In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.
基金supported by the National Natural Science Foundation of China(No.11332007)
文摘The nth-order expansion of the parabolized stability equation (EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation (LPSE) in the streamwise direction. The EPSE together with the homogeneous boundary conditions forms a local eigenvalue problem, in which the streamwise variations of the mean flow and the disturbance shape function are considered. The first-order EPSE (EPSE1) and the second-order EPSE (EPSE2) are used to study the crossflow instability in the swept NLF(2)-0415 wing boundary layer. The non-parallelism degree of the boundary layer is strong. Compared with the growth rates predicted by the linear stability theory (LST), the results given by the EPSE1 and EPSE2 agree well with those given by the LPSE. In particular, the results given by the EPSE2 are almost the same as those given by the LPSE. The prediction of the EPSE1 is more accurate than the prediction of the LST, and is more efficient than the predictions of the EPSE2 and LPSE. Therefore, the EPSE1 is an efficient ey prediction tool for the crossflow instability in swept-wing boundary-layer flows.
基金The project supported by the National Natural Science Foundation of China, Grant No.19572048
文摘Crossflow instability plays very important role in the transition of the boundary layer on a swept wing, typical in the engineering applications. Experiments revealed that the linear stability theory well predicted the form of the crossflow vortices, but usually much overpredicted their growth rate. Using nonlinear theory of hydrodynamic stability, combined with some other considerations, we were able to obtain the growth rate in good agreement with experimental observations.
基金supported by the National Natural Science Foundation of China(Nos.92052203,12202243 and 11872230).
文摘Machine learning has been widely utilized in flow field modeling and aerodynamic optimization.However,most applications are limited to two-dimensional problems.The dimensionality and the cost per simulation of three-dimensional problems are so high that it is often too expensive to prepare sufficient samples.Therefore,transfer learning has become a promising approach to reuse well-trained two-dimensional models and greatly reduce the need for samples for threedimensional problems.This paper proposes to reuse the baseline models trained on supercritical airfoils to predict finite-span swept supercritical wings,where the simple swept theory is embedded to improve the prediction accuracy.Two baseline models are investigated:one is commonly referred to as the forward problem of predicting the pressure coefficient distribution based on the geometry,and the other is the inverse problem that predicts the geometry based on the pressure coefficient distribution.Two transfer learning strategies are compared for both baseline models.The transferred models are then tested on complete wings.The results show that transfer learning requires only approximately 500 wing samples to achieve good prediction accuracy on different wing planforms and different free stream conditions.Compared to the two baseline models,the transferred models reduce the prediction error by 60%and 80%,respectively.
基金co-supported by the National Natural Science Foundation of China (Nos. 12172372 and 12132019)the National Major Science and Technology Projects of China (No. J2019-III-0010-0054)
文摘Scallop ice is a special phenomenon that occurs during swept wing aircraft passing through icing clouds.It poses a great challenge for the icing safety assessment that the complex scallop ice shape feature and its mechanism are still unclear.In this work,a large-scale icing wind tunnel experiment of swept wing designed by NACA0012 airfoil is conducted in the Icing Wind Tunnel of China Aerodynamics Research and Development Center.The detailed three-dimensional ice shapes under 0°,15°,30°and 45°swept angles are obtained by laser scanning technology.The experimental results show that with the swept angle increasing from 0°to 45°,the 2D double ice horn structures show certain spanwise variation,and finally transform into complete scallop ice with ice thickness greatly enhanced in the stagnation line region.The empirical mode decomposition of the spanwise ice curve captures the high-frequency fluctuation on the scallop ice caused by the small-scale roughness element,while the trend with low frequency is not obvious.Based on the experimental data,a new complete scallop ice geometric model,named 5Points-5Lines-2Arcs(5P-5L-2A)model,is proposed,which can provide important basis for the quantitative description of complex scallop ice shape.