期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Polar Vortex Oscillation Viewed in an Isentropic Potential Vorticity Coordinate 被引量:13
1
作者 任荣彩 Ming CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期884-900,共17页
The stratospheric polar vortex oscillation (PVO) in the Northern Hemisphere is examined in a semiLagrangian θ-PVLAT coordinate constructed by using daily isentropic potential vorticity maps derived from NCEP/NCAR r... The stratospheric polar vortex oscillation (PVO) in the Northern Hemisphere is examined in a semiLagrangian θ-PVLAT coordinate constructed by using daily isentropic potential vorticity maps derived from NCEP/NCAR reanalysis Ⅱdataset covering the period from 1979 to 2003. In the semi-Lagrangian θ-PVLAT coordinate, the variability of the polar vortex is solely attributed to its intensity change because the changes in its location and shape would be naturally absent by following potential vorticity contours on isentropic surfaces. The EOF and regression analyses indicate that the PVO can be described by a pair of poleward and downward propagating modes. These two modes together account for about 82% variance of the daily potential vorticity anomalies over the entire Northern Hemisphere. The power spectral analysis reveals a dominant time scale of about 107 days in the time series of these two modes, representing a complete PVO cycle accompanied with poleward propagating heating anomalies of both positive and negative signs from the equator to the pole. The strong polar vortex corresponds to the arrival of cold anomalies over the polar circle and vice versa. Accompanied with the poleward propagation is a simultaneous downward propagation. The downward propagation time scale is about 20 days in high and low latitudes and about 30 days in mid-latitudes. The zonal wind anomalies lag the poleward and downward propagating temperature anomalies of the opposite sign by 10 days in low and high latitudes and by 20 days in mid-latitudes. The time series of the leading EOF modes also exhibit dominant time scales of 8.7, 16.9, and 33.8 months. They approximately follow a double-periodicity sequence and correspond to the 3-peak extratropical Quasi-Biennial Oscillation (QBO) signal. 展开更多
关键词 polar vortex oscillation semi-Lagrangian θ-PVLAT coordinate poleward and downwardpropagation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部