Cavitation is one of the main causes of deteriorating stability of bulb turbines.To enhance their stability,this study examines the effects of runner cavitation on draft tube pressure fluctuation and vibration in bulb...Cavitation is one of the main causes of deteriorating stability of bulb turbines.To enhance their stability,this study examines the effects of runner cavitation on draft tube pressure fluctuation and vibration in bulb turbine through experimental methods.With varying cavitation coefficients,a synchronous test system,including a high-speed camera,vibration acceleration sensors and pressure pulsation sensors,is applied to obtain cavitation images of the runner,vibration and internal fluid pressure pulsation data of the draft tube.The results show that the correlated component of pressure pulsation signals during the cavitation process is the synchronous pressure pulsation of 16f_(n)With the development of cavitation,the amplitude of synchronous pressure pulsation increases first and then decreases.Cavitation enhances the high-frequency vibration on the wall of runner chamber.The root mean square(rms)of the vertical vibration component IMF3,the horizontal vibration components IMF2,IMF4 are linearly negatively correlated with the cavitation coefficient.The associated component between cavitation-induced vibration and pressure pulsation signal is 16f_(n)and its harmonics.In the process of cavitation,pressure pulsation plays a leading role in vibration.展开更多
The large eddy simulation(LES) method is used to simulate cavitating flow in a venturi tube. The simulated results agree fairly well with the experimental data. To quantitatively describe the relationship between cavi...The large eddy simulation(LES) method is used to simulate cavitating flow in a venturi tube. The simulated results agree fairly well with the experimental data. To quantitatively describe the relationship between cavitation evolution and excited pressure fluctuation in the venturi tube, a modified prediction model is proposed and its accuracy is verified by the LES results. Based on the original one-dimensional model for the external cavitating flow around a hydrofoil, this model is corrected according to the internal cavitating flow characteristics in the venturi tube. The results show that the original one-dimensional model ignores the choking effect of cavitating flow, which is obvious in a venturi tube with a narrow flow channel, thus leading to an inaccurate prediction of pressure fluctuation in the venturi tube. The modified model can significantly overcome its deficiencies and improve the accuracy of the pressure fluctuation prediction, providing a theoretical basis and guidance for engineering application to controlling the pressure fluctuation in a venturi tube or for other internal flows.展开更多
Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations ...Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations induced by draft tube vortices in a model Francis turbine,by solving RANS equations with RNG k-turbulence model and ZGB cavitation model,with modified turbulence viscosity.Three cases with different flow rates at high head were studied.In the study case of part load,two modes of revolutions with the same rotating direction,revolution around the axis of the draft tube cone,and revolution around the core of the vortex rope,can be recognized.The elliptical shaped vortex rope causes anisotropic characteristics of pressure fluctuations around the centerline of the draft tube cone.By analyzing the phase angles of the pressure fluctuations,the role of the vortex rope as an exciter in the oscillating case can be recognized.An analysis of Batchelor instability,i.e.instability in q-vortex like flow structure,has been carried out on the draft tube vortices in these three cases.It can be concluded that the trajectory for study case with part load lies in the region of absolute instability(AI),and it lies in the region of convective instability(CI)for study case with design flow rate.Trajectory for study case with over load lies in the AI region at the inlet of the draft tube,and enters CI region near the end of the elbow.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52079108)supported by the School-Enterprise Collaborative Innovation Fund for graduate students of Xi'an University of Technology.
文摘Cavitation is one of the main causes of deteriorating stability of bulb turbines.To enhance their stability,this study examines the effects of runner cavitation on draft tube pressure fluctuation and vibration in bulb turbine through experimental methods.With varying cavitation coefficients,a synchronous test system,including a high-speed camera,vibration acceleration sensors and pressure pulsation sensors,is applied to obtain cavitation images of the runner,vibration and internal fluid pressure pulsation data of the draft tube.The results show that the correlated component of pressure pulsation signals during the cavitation process is the synchronous pressure pulsation of 16f_(n)With the development of cavitation,the amplitude of synchronous pressure pulsation increases first and then decreases.Cavitation enhances the high-frequency vibration on the wall of runner chamber.The root mean square(rms)of the vertical vibration component IMF3,the horizontal vibration components IMF2,IMF4 are linearly negatively correlated with the cavitation coefficient.The associated component between cavitation-induced vibration and pressure pulsation signal is 16f_(n)and its harmonics.In the process of cavitation,pressure pulsation plays a leading role in vibration.
基金supported by the National Natural Science Foundation of China(Grant Nos.51679169,11472197)。
文摘The large eddy simulation(LES) method is used to simulate cavitating flow in a venturi tube. The simulated results agree fairly well with the experimental data. To quantitatively describe the relationship between cavitation evolution and excited pressure fluctuation in the venturi tube, a modified prediction model is proposed and its accuracy is verified by the LES results. Based on the original one-dimensional model for the external cavitating flow around a hydrofoil, this model is corrected according to the internal cavitating flow characteristics in the venturi tube. The results show that the original one-dimensional model ignores the choking effect of cavitating flow, which is obvious in a venturi tube with a narrow flow channel, thus leading to an inaccurate prediction of pressure fluctuation in the venturi tube. The modified model can significantly overcome its deficiencies and improve the accuracy of the pressure fluctuation prediction, providing a theoretical basis and guidance for engineering application to controlling the pressure fluctuation in a venturi tube or for other internal flows.
基金supported by the National Natural Science Foundation of China(Grant No.51076077)National Key Technology R&D Program of China(Grant No.2008BAC48B02)
文摘Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations induced by draft tube vortices in a model Francis turbine,by solving RANS equations with RNG k-turbulence model and ZGB cavitation model,with modified turbulence viscosity.Three cases with different flow rates at high head were studied.In the study case of part load,two modes of revolutions with the same rotating direction,revolution around the axis of the draft tube cone,and revolution around the core of the vortex rope,can be recognized.The elliptical shaped vortex rope causes anisotropic characteristics of pressure fluctuations around the centerline of the draft tube cone.By analyzing the phase angles of the pressure fluctuations,the role of the vortex rope as an exciter in the oscillating case can be recognized.An analysis of Batchelor instability,i.e.instability in q-vortex like flow structure,has been carried out on the draft tube vortices in these three cases.It can be concluded that the trajectory for study case with part load lies in the region of absolute instability(AI),and it lies in the region of convective instability(CI)for study case with design flow rate.Trajectory for study case with over load lies in the AI region at the inlet of the draft tube,and enters CI region near the end of the elbow.