Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num...Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.展开更多
This problem presents the effects of thermal radiation and chemical reaction on MHD unsteady mass transfer flow past a semi-infinite vertical porous plate embedded in a porous medium in a slip flow regime with variabl...This problem presents the effects of thermal radiation and chemical reaction on MHD unsteady mass transfer flow past a semi-infinite vertical porous plate embedded in a porous medium in a slip flow regime with variable suction. A magnetic field of uniform strength is assumed to be applied transversely to the direction of the main flow. Perturbation technique is applied to transform the non-linear coupled governing partial differential equations in dimensionless form into a system of ordinary differential equations. The resulting equations are solved analytically and the solutions for the velocity, temperature and concentration fields are obtained. The effects of various flow parameters on velocity, temperature and concentration fields are presented graphically. For different values of the flow parameters involved in the problem, the numerical calculations for the Nusselt number, Sherwood number and skin-friction co-efficient at the plate are performed in tabulated form. It is seen that chemical reaction causes the velocity field and concentration field to decrease and the chemical reaction decreases the rate of viscous drag at the plate.展开更多
基金National Natural Science Foundation of China (No.50435030)
文摘Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
文摘This problem presents the effects of thermal radiation and chemical reaction on MHD unsteady mass transfer flow past a semi-infinite vertical porous plate embedded in a porous medium in a slip flow regime with variable suction. A magnetic field of uniform strength is assumed to be applied transversely to the direction of the main flow. Perturbation technique is applied to transform the non-linear coupled governing partial differential equations in dimensionless form into a system of ordinary differential equations. The resulting equations are solved analytically and the solutions for the velocity, temperature and concentration fields are obtained. The effects of various flow parameters on velocity, temperature and concentration fields are presented graphically. For different values of the flow parameters involved in the problem, the numerical calculations for the Nusselt number, Sherwood number and skin-friction co-efficient at the plate are performed in tabulated form. It is seen that chemical reaction causes the velocity field and concentration field to decrease and the chemical reaction decreases the rate of viscous drag at the plate.