This paper presents the results of a numerical investigation of micro-sized particle removal by droplet impact. Computational fluid dynamics simulation is used to calculate the flow distribution of droplet impact on a...This paper presents the results of a numerical investigation of micro-sized particle removal by droplet impact. Computational fluid dynamics simulation is used to calculate the flow distribution of droplet impact on a flat surface. The hydrodynamic forces exerted on the particle are then computed. Key factors controlling particle removal are discussed. Both hydrophilic and hydrophobic surfaces are considered. The flow distributions,especially the front edge expanding upon impact at microscale,strongly depend on surface wettability. The associated hydrodynamic forces on the particles vary accordingly. In addition, the impact on a dry surface can produce higher removal efficiency than that on a wet surface. Under the same impact conditions, the drag force exerted on a particle residing on a dry surface can be three orders of magnitudes larger than on a wet surface. Improving droplet impact velocity is more effective than improving droplet size.展开更多
In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially d...In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially discussed. In the Eulerian two-phase model, gas and liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase, k - ε model is used to describe the behavior of the liquid phase. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass consecrvation equation. The contribution of bubble movement to the turbulent energy and its dissipation rate is taken into accounted by adding extra volumetric source terms to the equations of turbulent enemy and its dissipation rate. The comparison between the mathematical simulation and experiment data indicates that the interphase lift force has a big effect on the flow behavior, and considering both drug force and lift force as interphase forces is important to accurately simulate the gas-water two-phase fluid flow in air-stirred systems. The interphase lift force makes bubbles move away from the centerline, the gas concentration is decreased near the centerline, and increased near the wall. The lift force is smaller than drug force at the same place, especially far away from the centerline.展开更多
The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing dur...The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min^-1;H2:2 L·min^-1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model.展开更多
Micromotors are widely used in cell operation,drug delivery and environmental decontamination due to their small size,low energy consumption and large propelling power.Compared to traditional Janus micromotor,the shel...Micromotors are widely used in cell operation,drug delivery and environmental decontamination due to their small size,low energy consumption and large propelling power.Compared to traditional Janus micromotor,the shell Janusmicromotor has better motion performance.However,the structural optimization of itsmotion performance is still unclear.The main factor restricting the motion performance of shell Janus micromotors is the drag forces.In the current work,theoretical analysis and numerical simulation were applied to analyze the drag forces of shell Janus micromotors.This study aims to design the optimum structure of shell Janus micromotors with minimum drag forces and obtain the magnitude of drag forces considering both the internal and external fluids of the shell Janus micromotors.Moreover,the influence of the motor geometry and Reynolds number on the drag coefficient was analyzed using numerical simulations.The results provide guidance for the optimum flow velocity,opening diameter and shell thickness to achieve minimum drag force.展开更多
A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow ...A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases.展开更多
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass a...Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.展开更多
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation...The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures.展开更多
We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical ...We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy.展开更多
A formulation of the skin-friction drag related to the Reynolds shear stress in a turbulent channel flow is derived. A direct numerical simulation (DNS) of the turbulent control is performed by imposing the spatiall...A formulation of the skin-friction drag related to the Reynolds shear stress in a turbulent channel flow is derived. A direct numerical simulation (DNS) of the turbulent control is performed by imposing the spatially oscillating spanwise Lorentz force. Under the action of the Lorentz force with several proper control parameters, only the periodi- cally well-organized streamwise vortices are finally observed in the near-wall region. The Reynolds shear stress decreases dramatically, especially in the near-wall area, resulting in a drag reduction.展开更多
This paper investigates the computational solution to the problem of projectile motion under a significant linear drag effect. The drag force acting on the particle within the medium of propagation is proportional to ...This paper investigates the computational solution to the problem of projectile motion under a significant linear drag effect. The drag force acting on the particle within the medium of propagation is proportional to the cross-section area of the projectile, the velocity of the particle, and the medium’s density. From zero air resistance force (vacuum) the problems are well known with solutions, but with air resistance (drag force) the problems have no exact analytical solutions which lead to most of the significant scientific research works using numerical methods. Therefore, this study aims to present the analysis of the computational modelling of drag force exerted by the surrounding medium on the linear motion. However, the horizontal and vertical components of differential equations of motion were derived and characterized from the solutions governed by Newton’s 2<sup>nd</sup> law of motion. The baseball features were presented as the projectile (object) in this work. In addition, the numerical computational results were received from FreeMat. The results were discussed and compared with those from the vacuum. Moreover, the displacements, velocities, range, and trajectories of the projectile were all discussed and a conclusion was made.展开更多
Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not bee...Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.展开更多
This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vege...This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vegetation are considered as the drag force item. The secondary currents are also taken into account in the governing equations, and the preliminary estimation of the secondary current intensity coefficient K is discussed. The predicted results for the straight channels and the apex cross-section of meandering channels agree well with experimental data, which shows that the analytical model presented here can be applied to predict the flow in compound channels with vegetated floodplains.展开更多
The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineerin...The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineering Laboratory, Saitama University, Japan, to elucidate the effects of windbreak width in the wind direction on wind velocity reduction behind a windbreak. The variations of flow field for different windbreak widths were studied numerically by using the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equation with a k-c turbulence closure model. Results show that the total drag force to wind increased with increasing windbreak width, but the bulk drag coefficient decreased slightly. The relationship between the bulk drag coefficient Cd and the windbreak width W and height H can be presented by the equation of Ca= kd (W/H)^-b (kd, b: constants). The result of the numerical simulation shows that the windbreak width greatly affects the location and the value of the minimum wind velocity. The wind velocity decreased by 15%-22% as the windbreak width increased.展开更多
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the un...The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.展开更多
The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream c...The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream control cylinder (d) varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G) ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D) and the diameter ratio between the two cylinders (d/D) have important effects on the drag and lift coefficients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and flow characteristics.展开更多
An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separate...An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separated into two horizontal layers: a vegetation layer and a free water layer. In the vegetation layer, a mechanical analysis for the flexible vegetation is conducted, and an approximately linear relationship between the drag force of bending vegetation and the streamwise mean flow velocity is observed in the case of large deflection, which differes significantly from the case of rigid upright vegetation. Based on the theoretical analysis, a linear streamwise drag force-mean flow velocity expression in the momentum equation is derived, and an analytical solution is obtained. For the free water layer, a new expression is presented, replacing the traditional logarithmic velocity distribution, to obtain a zero velocity gradient at the water surface. Finally, the analytical predictions are compared with published experimental data, and the good agreement demonstrates that this model is effective for the open channel flow through the large deflection flexible vegetation.展开更多
The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stoc...The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.展开更多
The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineerin...The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineering Laboratory, Saitama University, Japan, to elucidate the effects of windbreak width in the wind direction on wind velocity reduction behind a windbreak. The variations of flow field for different windbreak widths were studied numerically by using the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equation with a k-ε turbulence closure model. Results show that the total drag force to wind increased with increasing windbreak width, but the bulk drag coefficient decreased slightly. The relationship between the bulk drag coefficient Cd and the windbreak width W and height H can be presented by the equation of Cd=kd (W/H)-b (kd, b: constants). The result of the numerical simulation shows that the windbreak width greatly affects the location and the value of the minimum wind velocity. The wind velocity decreased by 15%–22% as the windbreak width increased.展开更多
The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or ...The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.展开更多
To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled a...To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second-order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement.展开更多
文摘This paper presents the results of a numerical investigation of micro-sized particle removal by droplet impact. Computational fluid dynamics simulation is used to calculate the flow distribution of droplet impact on a flat surface. The hydrodynamic forces exerted on the particle are then computed. Key factors controlling particle removal are discussed. Both hydrophilic and hydrophobic surfaces are considered. The flow distributions,especially the front edge expanding upon impact at microscale,strongly depend on surface wettability. The associated hydrodynamic forces on the particles vary accordingly. In addition, the impact on a dry surface can produce higher removal efficiency than that on a wet surface. Under the same impact conditions, the drag force exerted on a particle residing on a dry surface can be three orders of magnitudes larger than on a wet surface. Improving droplet impact velocity is more effective than improving droplet size.
文摘In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially discussed. In the Eulerian two-phase model, gas and liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase, k - ε model is used to describe the behavior of the liquid phase. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass consecrvation equation. The contribution of bubble movement to the turbulent energy and its dissipation rate is taken into accounted by adding extra volumetric source terms to the equations of turbulent enemy and its dissipation rate. The comparison between the mathematical simulation and experiment data indicates that the interphase lift force has a big effect on the flow behavior, and considering both drug force and lift force as interphase forces is important to accurately simulate the gas-water two-phase fluid flow in air-stirred systems. The interphase lift force makes bubbles move away from the centerline, the gas concentration is decreased near the centerline, and increased near the wall. The lift force is smaller than drug force at the same place, especially far away from the centerline.
基金supported by the National Natural Science Foundation of China(No.51234001)the Major State Basic Research Development Program of China(No.2012CB720401)
文摘The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min^-1;H2:2 L·min^-1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model.
基金the Fundamental Research Funds for the Central Universities(WUT:2019III075GX)the Open Foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Grant No.TAM201813).
文摘Micromotors are widely used in cell operation,drug delivery and environmental decontamination due to their small size,low energy consumption and large propelling power.Compared to traditional Janus micromotor,the shell Janusmicromotor has better motion performance.However,the structural optimization of itsmotion performance is still unclear.The main factor restricting the motion performance of shell Janus micromotors is the drag forces.In the current work,theoretical analysis and numerical simulation were applied to analyze the drag forces of shell Janus micromotors.This study aims to design the optimum structure of shell Janus micromotors with minimum drag forces and obtain the magnitude of drag forces considering both the internal and external fluids of the shell Janus micromotors.Moreover,the influence of the motor geometry and Reynolds number on the drag coefficient was analyzed using numerical simulations.The results provide guidance for the optimum flow velocity,opening diameter and shell thickness to achieve minimum drag force.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379108 and 51609125)the Open Foundation of Engineering Research Center of Eco-environment in Three Gorges Reservoir Region,Ministry of Education(Grant No.2015KF-03)the University Scientific Research and Application Project of Yichang(Grant No.A16-302-a13)
文摘A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases.
文摘Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
文摘The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.11302220,11374292,and 31100555)the National Basic Research Program of China(Grant No.2011CB910402)
文摘We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy.
基金Supported by the National Natural Science Foundation of China(Nos.11172140 and 11372356)the Open Project of State Key Laboratory of Explosion Science and Technology in Beijing Institute of Technology(No.KFJJ13-3M)
文摘A formulation of the skin-friction drag related to the Reynolds shear stress in a turbulent channel flow is derived. A direct numerical simulation (DNS) of the turbulent control is performed by imposing the spatially oscillating spanwise Lorentz force. Under the action of the Lorentz force with several proper control parameters, only the periodi- cally well-organized streamwise vortices are finally observed in the near-wall region. The Reynolds shear stress decreases dramatically, especially in the near-wall area, resulting in a drag reduction.
文摘This paper investigates the computational solution to the problem of projectile motion under a significant linear drag effect. The drag force acting on the particle within the medium of propagation is proportional to the cross-section area of the projectile, the velocity of the particle, and the medium’s density. From zero air resistance force (vacuum) the problems are well known with solutions, but with air resistance (drag force) the problems have no exact analytical solutions which lead to most of the significant scientific research works using numerical methods. Therefore, this study aims to present the analysis of the computational modelling of drag force exerted by the surrounding medium on the linear motion. However, the horizontal and vertical components of differential equations of motion were derived and characterized from the solutions governed by Newton’s 2<sup>nd</sup> law of motion. The baseball features were presented as the projectile (object) in this work. In addition, the numerical computational results were received from FreeMat. The results were discussed and compared with those from the vacuum. Moreover, the displacements, velocities, range, and trajectories of the projectile were all discussed and a conclusion was made.
基金the National Key Technologies R&D Program (2001BA401A03-10).
文摘Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.
基金supported by the National Natural Science Foundation of China (Nos. 50679061, 50709025,and 50749031)
文摘This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vegetation are considered as the drag force item. The secondary currents are also taken into account in the governing equations, and the preliminary estimation of the secondary current intensity coefficient K is discussed. The predicted results for the straight channels and the apex cross-section of meandering channels agree well with experimental data, which shows that the analytical model presented here can be applied to predict the flow in compound channels with vegetated floodplains.
文摘The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineering Laboratory, Saitama University, Japan, to elucidate the effects of windbreak width in the wind direction on wind velocity reduction behind a windbreak. The variations of flow field for different windbreak widths were studied numerically by using the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equation with a k-c turbulence closure model. Results show that the total drag force to wind increased with increasing windbreak width, but the bulk drag coefficient decreased slightly. The relationship between the bulk drag coefficient Cd and the windbreak width W and height H can be presented by the equation of Ca= kd (W/H)^-b (kd, b: constants). The result of the numerical simulation shows that the windbreak width greatly affects the location and the value of the minimum wind velocity. The wind velocity decreased by 15%-22% as the windbreak width increased.
基金the National Natural Science Foundation of China(Nos.50679061,50709025and50749031)
文摘The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
基金supported by the National Natural Science Foundation of China(Grant No.40871050)
文摘The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream control cylinder (d) varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G) ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D) and the diameter ratio between the two cylinders (d/D) have important effects on the drag and lift coefficients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and flow characteristics.
基金Project supported by the National Natural Science Foundation of China(Nos.11372232 and 51479007)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130141110016)the State Water Pollution Control and Management of Major Special Science and Technology(No.2012ZX07205-005-03)
文摘An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separated into two horizontal layers: a vegetation layer and a free water layer. In the vegetation layer, a mechanical analysis for the flexible vegetation is conducted, and an approximately linear relationship between the drag force of bending vegetation and the streamwise mean flow velocity is observed in the case of large deflection, which differes significantly from the case of rigid upright vegetation. Based on the theoretical analysis, a linear streamwise drag force-mean flow velocity expression in the momentum equation is derived, and an analytical solution is obtained. For the free water layer, a new expression is presented, replacing the traditional logarithmic velocity distribution, to obtain a zero velocity gradient at the water surface. Finally, the analytical predictions are compared with published experimental data, and the good agreement demonstrates that this model is effective for the open channel flow through the large deflection flexible vegetation.
基金National Natural Science Foundation of China(Grant No.59895410,59779002)
文摘The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.
文摘The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineering Laboratory, Saitama University, Japan, to elucidate the effects of windbreak width in the wind direction on wind velocity reduction behind a windbreak. The variations of flow field for different windbreak widths were studied numerically by using the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equation with a k-ε turbulence closure model. Results show that the total drag force to wind increased with increasing windbreak width, but the bulk drag coefficient decreased slightly. The relationship between the bulk drag coefficient Cd and the windbreak width W and height H can be presented by the equation of Cd=kd (W/H)-b (kd, b: constants). The result of the numerical simulation shows that the windbreak width greatly affects the location and the value of the minimum wind velocity. The wind velocity decreased by 15%–22% as the windbreak width increased.
基金National Natural Science Foundation of China(No.59779005)
文摘The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained.
基金Financial support from the NSFC-ICIMOD(41661144041)NSFC(Grant No.41772312)+1 种基金Key Research and Development Program(2017SZ0041)Sichuan Province Science and Technology Support Project(2016SZ0067)
文摘To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second-order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement.