期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical simulation on the movement law of overlying strata in the stope with a fault and analysis of its influence on the ground gas drainage boreholes
1
作者 胡千庭 闫晶晶 程国强 《Journal of Coal Science & Engineering(China)》 2007年第3期266-270,共5页
In order to study the influence of a fault on the movement law of the overlying strata as well as its effect on the gas drainage boreholes, based on the practical situation of 1242(1) panel at Xieqiao Mine in Huaina... In order to study the influence of a fault on the movement law of the overlying strata as well as its effect on the gas drainage boreholes, based on the practical situation of 1242(1) panel at Xieqiao Mine in Huainan, the Finite Element Method (FEM) model was built up, and the distribution of the stress field and the displacement field of the overlying strata in the stope with a fault were simulated by using the FEM software ANSYS. The results indicate that because of the existence of the fault, the horizontal displacement of overlying strata near the gas drainage borehole becomes larger than that in the stope without a fault, and the distribution of the stress field of the overlying strata changes greatly. When the working face is far away from the fault, the distribution of the stress field is approximately symmetrical. As the working face advances to the place 50 m away from the fault, the stress range at the right side goaf area is as twice as that at the left side. Here, the stress distribution area of goaf area and the fault plane run through, the fracture-connected-zone is formed. It can be presumed that the gas adsorbed in the coal and rock will flow into the fault zone along the fracture-connected-zone, which causes the quantity of gas drainage reduce remarkably. 展开更多
关键词 FAULT overlying strata numerical simulation gas drainage borehole
下载PDF
Gas emission quantity prediction and drainage technology of steeply inclined and extremely thick coal seams 被引量:5
2
作者 Liu Cheng Li Shugang Yang Shouguo 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期415-422,共8页
Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This st... Gas emissions of workfaces in steeply inclined and extremely thick coal seams differ from those under normal geological conditions, which usually feature a high gas concentration and a large emission quantity. This study took the Wudong coal mine in Xinjiang province of China as a typical case. The gas occurrence of the coal seam and the pressure-relief range of the surrounding rock(coal) were studied by experiments and numerical simulations. Then, a new method to calculate the gas emission quantity for this special geological condition was provided. Based on the calculated quantity, a further gas drainage plan, as well as the evaluation of it with field drainage data, was finally given. The results are important for engineers to reasonably plan the gas drainage boreholes of steeply inclined and extremely thick coal seams. 展开更多
关键词 Gas occurrence Stress unloading area Gas drainage plan Gas emission quantity drainage boreholes
下载PDF
Experimental and measured research on three-dimensional deformation law of gas drainage borehole in coal seam 被引量:8
3
作者 Hongbao Zhao Jinyu Li +3 位作者 Yihong Liu Yikuo Wang Tao Wang Hui Cheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期397-403,共7页
Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. ... Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone. 展开更多
关键词 Gas drainage borehole Dynamic monitoring Strain-time curve Three-dimensional deformation law
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部