期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nitrogen and phosphorus changes and optimal drainage time of flooded paddy field based on environmental factors 被引量:4
1
作者 Meng-hua XIAO Shuang-en YU +1 位作者 Yan-yan WANG Rong HUANG 《Water Science and Engineering》 EI CAS CSCD 2013年第2期164-177,共14页
While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitr... While many controlled irrigation and drainage techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study was conducted to examine the changes of nitrogen and phosphorus of a flooded paddy water system after fertilizer application and at each growth stage so as to obtain the optimal drainage time at each growth stage. Four treatments with different water level management methods at each growth stage were conducted under the condition of ten-day continuous flooding. Results show that the ammonia nitrogen ( NH4-N ) concentration reached the peak value once the fertilizer was applied, and then decreased to a relatively low level seven to ten days later, and that the nitrate nitrogen (NO^-N) concentration gradually rose to its peak value, which appeared later in subsurface water than in surface water. Continuous flooding could effectively reduce the concentrations of NH^-N , NO3-N, and total phosphorus (TP) in surface water. However, the paddy water disturbance, in the process of soil surface adsorption and nitrification, caused NH]-N to be released and increased the concentrations of NH4-N and NO^-N in surface water. A multi-objective controlled drainage model based on environmental factors was established in order to obtain the optimal drainage time at each growth stage and better guide the drainage practices of farmers. The optimal times for surface drainage are the fourth, sixth, fifth, and sixth days after flooding at the tillering, jointing-booting, heading-flowering, and milking stages, respectively. 展开更多
关键词 ammonia nitrogen nitrate nitrogen PHOSPHORUS optimal drainage time flooded paddy field
下载PDF
“Extreme utilization”development of deep shale gas in southern Sichuan Basin,SW China 被引量:2
2
作者 MA Xinhua WANG Hongyan +4 位作者 ZHAO Qun LIU Yong ZHOU Shangwen HU Zhiming XIAO Yufeng 《Petroleum Exploration and Development》 CSCD 2022年第6期1377-1385,共9页
To efficiently develop deep shale gas in southern Sichuan Basin,under the guidance of“extreme utilization”theory,a basic idea and solutions for deep shale gas development are put forward and applied in practice.In v... To efficiently develop deep shale gas in southern Sichuan Basin,under the guidance of“extreme utilization”theory,a basic idea and solutions for deep shale gas development are put forward and applied in practice.In view of multiple influencing factors of shale gas development,low single-well production and marginal profit of wells in this region,the basic idea is to establish“transparent geological body”of the block in concern,evaluate the factors affecting shale gas development through integrated geological-engineering research and optimize the shale gas development of wells in their whole life cycle to balance the relationship between production objectives and development costs.The solutions are as follows:(1)calculate the gold target index and pinpoint the location of horizontal well drilling target,and shale reservoirs are depicted accurately by geophysical and other means to build underground transparent geological body;(2)optimize the drilling and completion process,improve the adaptability of key tools by cooling,reducing density and optimizing the performance of drilling fluid,the“man-made gas reservoir”is built by comprehensively considering the characteristics of in-situ stress and fractures after the development well is drilled;(3)through efficient management,establishment of learning curve and optimization of drainage and production regime,the development quality and efficiency of the well are improved across its whole life cycle,to fulfil“extreme utilization”development of shale gas.The practice shows that the estimated ultimate recovery of single wells in southern Sichuan Basin increase by 10%-20%than last year. 展开更多
关键词 shale gas “extreme utilization”theory underground connected body gold target index drainage and production optimization marine deep shale gas
下载PDF
“Extreme utilization”development theory of unconventional natural gas 被引量:1
3
作者 MA Xinhua 《Petroleum Exploration and Development》 CSCD 2021年第2期381-394,共14页
In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually form... In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually formed,and supports the scale benefit exploration of unconventional gas in China.On this basis,the development theory of"extreme utilization"is proposed,its theoretical connotation together with development technologies of unconventional natural gas are clarified.The theoretical connotation is that,aiming at"extreme gas reservoirs","extreme techniques"are utilized to build subsurface connected bodies,expand the discharge area,and enlarge the production range,to obtain the maximum single-well production,extreme recovery,and eventually achieve the"extreme effect"of production.The series of development technologies include micro/nano-scale reservoir evaluation,"sweet spot"prediction,unconventional percolation theory and production capacity evaluation,optimization of grid well pattern,optimal-fast drilling and volume fracturing,and working regulation optimization and"integrated"organizing system.The"extreme utilization"development theory has been successfully applied in the development of unconventional gas reservoirs such as Sulige tight gas,South Sichuan shale gas,and Qinshui coalbed methane.Such practices demonstrate that,the"extreme utilization"development theory has effectively promoted the development of unconventional gas industry in China,and can provide theoretical guidance for effective development of other potential unconventional and difficult-to-recovery resources. 展开更多
关键词 unconventional natural gas extreme gas reservoir extreme development theory of extreme utilization subsurface connected body production capacity evaluation grid well pattern drainage and extraction optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部