期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Theoretical description of drawing body shape in an inclined seam with longwall top coal caving mining 被引量:6
1
作者 Jiachen Wang Weijie Wei Jinwang Zhang 《International Journal of Coal Science & Technology》 EI 2020年第1期182-195,共14页
Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are emplo... Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are employed to investigate these characteristics and derive a theoretical equation for the drawing body shape along the working face in an inclined seam.By analyzing the initial positions of drawn marked particles,the characteristics of the drawing body shape for different seam dip angles are obtained.It is shown that the drawing body of the top coal exhibits a shape-difference and volume-symmetry characteristic,on taking a vertical line through the center of support opening as the axis of symmetry,the shapes of the drawing body on the two sides of this axis are clearly different,but their volumes are equal.By establishing theoretical models of the drawing body in the initial drawing stage and the normal drawing stage,a theoretical equation for the drawing body in an inclined seam is proposed,which can accurately describe the characteristics of the drawing body shape.The shape characteristics and volume symmetry of the drawing body are further analyzed by comparing the results of theoretical calculations and numerical simulations.It is shown that one side of the drawing body is divided into two parts by an inflection point,with the lower part being a variation development area.This variation development area increases gradually with increasing seam dip angle,resulting in an asymmetry of the drawing body shape.However,the volume symmetry coefficient fluctuates around 1 for all values of the seam dip angle variation,and the volumes of the drawing body on the two sides are more or less equal as the variation development volume is more or less equal to the cut volume.Both theoretical calculations and numerical simulations confirm that the drawing body of the top coal exhibits the shape-difference and volume-symmetry characteristic. 展开更多
关键词 Longwall top coal caving mining Inclined seam Top coal drawing body shape Equation for drawing body
下载PDF
Three-dimensional experimental study of loose top-coal drawing law for longwall top-coal caving mining technology 被引量:12
2
作者 Jiachen Wang Jinwang Zhang +1 位作者 Zhengyang Song Zhaolong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期318-326,共9页
Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-c... Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-coal drawing test with shields and the controlled test without shields are performed in the condition without any boundary effect. Test results show that shields will cause reduction in drawing volume of coal in the LTCC mining. The deflection phenomenon of drawing body is also observed in the controlled test, which is verified that the deflection of drawing body is caused by shield. It is found that the deflection angle decreases with increasing caving height, with the maximum value of atailand the minimum value of 0. In addition, the formula to calculate the drawing volume is proposed subsequently.The deflection of drawing body is numerically simulated using particle flow code PFC3 Dand the proposed formula to calculate drawing volume in LTCC is also verified. 展开更多
关键词 Longwall top-coal caving(LTCC) Caving shield Three-dimensional(3D) physical model test Deflection of drawing body PFC3D
下载PDF
Numerical and theoretical investigations of the effect of the gangue-coal density ratio on the drawing mechanism in longwall top-coal caving
3
作者 Jinwang Zhang Dongliang Cheng +3 位作者 Yinchao Yang Weijie Wei Zhaolong Li Zhengyang Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期147-166,共20页
Discrete element calculations of the top-coal drawing process for diferent gangue-coal density ratios were conducted to investigate the efect of the gangue-coal density ratio on the drawing mechanism in longwall top-c... Discrete element calculations of the top-coal drawing process for diferent gangue-coal density ratios were conducted to investigate the efect of the gangue-coal density ratio on the drawing mechanism in longwall top-coal caving.The efects were analyzed for the drawing body,the top-coal boundary,and the recovery of top coal.The results show that for increasing density ratio,the initial drawing body on the goaf side is farther away from the drawing support and its width and volume gradually increase.The upper part of the sickle-shaped drawing body extends near the initial drawing body with increasing density ratio in the normal cycling stage,and the distance from the drawing body to the initial drawing body is its maximum width.The larger the density ratio,the smaller the height of the top coal above the goaf at the end of the initial drawing process.The height of the top-coal boundary decreases with increasing density ratio,until it reaches a limit.In a normal cycle,due to hysteretic development,the top-coal boundary moves toward the goaf until the density ratio is approximately 2.0,which is consistent with the physical experiment results.Finally,increasing the advance length of the working face is benefcial for increasing the overall recovery of top coal. 展开更多
关键词 Longwall top-coal caving Gangue-coal density ratio drawing body Top-coal boundary Recovery of top coal
下载PDF
Numerical investigation on the caving mechanism with different standard deviations of top coal block size in LTCC 被引量:1
4
作者 Jiachen Wang Weijie Wei +2 位作者 Jinwang Zhang Brijes Mishra Ang Li 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期583-591,共9页
The size distribution of the broken top coal blocks is an important factor,affecting the recovery ratio and the efficiency of drawing top coal in longwall top coal caving(LTCC)mining panel.The standard deviation of to... The size distribution of the broken top coal blocks is an important factor,affecting the recovery ratio and the efficiency of drawing top coal in longwall top coal caving(LTCC)mining panel.The standard deviation of top coal block size(dt)is one of the main parameters to reflect the size distribution of top coal.To find the effect of dt on the caving mechanism,this study simulates experiments with 9 different dt by using discrete element software PFC.The dt is divided into two stages:uniform distribution stage(UDS)whose dt is less than 0.1(Schemes 1–5),and nonuniform distribution stage(NDS)whose dt is more than 0.1(Schemes 6–9).This research mainly investigates the variation of recovery ratio,drawing body shape,boundary of top coal,and contact force between particles in the two stages,respectively.The results showed that with the increasing dt,the recovery ratio of the panel increases first and then decreases in UDS.It is the largest in Scheme 3,which mainly increases the drawing volume at the side of starting drawing end.However,the recovery ratio decreases first and then increases quickly in NDS,and it is the largest in Scheme 9,where the drawing volume at the side of finishing drawing end are relatively higher.In UDS,the major size of top coal is basically medium,while in NDS,the size varies from medium to small,and then to large,with a distinct difference in shape and volume of the drawing body.When the major size of top coal is medium and small,the cross-section width of the initial boundary of top coal at each height is relatively small.Conversely,when the top coal size is large,the initial boundary of top coal has a larger opening range,the rotating angle of lower boundary is relatively small in the normal drawing stage,which is conducive to the development of drawing body and reduces the residual top coal,and the maximum particle velocity and the particles movement angle are both larger.This study lays a foundation for the prediction of recovery ratio,and suggests that the uniform top coal is more manageable and has a larger recovery ratio. 展开更多
关键词 Longwall top coal caving mining Standard deviation of top coal size Recovery ratio drawing body Boundary of top coal Contact force
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部