期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Numerical Calculation of Channel Dredging Volume Using 3D Digital Stratum Model 被引量:1
1
作者 缪正建 李明超 钟登华 《Transactions of Tianjin University》 EI CAS 2012年第2期90-96,共7页
Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dred... Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation. 展开更多
关键词 dredging volume numerical calculation digital stratum model parametric modeling surface integral
下载PDF
Impacts of channel dredging on hydrodynamics and sediment dynamics in the main channels of the Jiaojiang River Estuary in China
2
作者 Yanming Yao Xueqian Chen +2 位作者 Jinxiong Yuan Li Li Weibing Guan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第9期132-144,共13页
Channel dredging in estuaries increases water depth and subsequently impacts sediment dynamics and morphology. The Jiaojiang River Estuary is dredged frequently owing to heavy shipping demands. In this study,the effec... Channel dredging in estuaries increases water depth and subsequently impacts sediment dynamics and morphology. The Jiaojiang River Estuary is dredged frequently owing to heavy shipping demands. In this study,the effects of different dredging schemes on siltation were assessed through numerical modeling. The sediment model of the Jiaojiang River Estuary utilized an optimized bottom boundary layer model that considered the bed sediment grain size and fluid mud, and this model was calibrated using field data. Result reveal that channel dredging modifies the flow velocity inside and around the channel by changing the bathymetry;subsequently, this affects the residual current, bed stress, suspended sediment concentration, and sediment fluxes. Increasing the dredging depth and width increases the net sediment fluxes into the channel and dredging depth has a greater influence on the channel siltation thickness. When the dredging depth is 8.4 m or11.4 m, the average siltation thickness of the channel is 0.07 m or 0.15 m per mouth respectively. The parallel movement of the channel has small effects on the siltation volume during the simulation period. The sediment deposits in the channel primarily originates from the tidal flats, through bottom sediment fluxes. Vertical net circulation has a dominant impact on siltation because the difference of horizontal current of each layer on the longitudinal section of the channel increases, which intensifies the lateral sediment transport between the shoal and channel. The influence of vertical frictional dissipation on the lateral circulation at the feature points accounts for more than 50% before dredging, while the non-linear advective term is dominant after dredging. Tidal pumping mainly affects the longitudinal sediment fluxes in the channel. These results can be used for channel management and planning for similar estuaries worldwide. 展开更多
关键词 sediment dynamics channel dredging bottom boundary layer SILTATION Jiaojiang River Estuary
下载PDF
Advances in Research of Treatment of Angina Pectoris in Coronary Heart Disease from the Method of Dredging Collaterals with Pungent
3
作者 Sihui WANG Yan SHEN 《Medicinal Plant》 CAS 2023年第2期84-89,共6页
The angina pectoris in coronary heart disease belongs to the category of"chest impediment"in traditional Chinese medicine,and belongs to the syndrome of root deficiency with tip excess.Its main pathogenesis ... The angina pectoris in coronary heart disease belongs to the category of"chest impediment"in traditional Chinese medicine,and belongs to the syndrome of root deficiency with tip excess.Its main pathogenesis is obstruction of the heart collaterals,and treatment mainly adopts dredging collaterals and relieving pain.Based on the treatment principles of dredging collaterals with pungent,aiming at the etiology,pathogenesis and disease characteristics of angina pectoris in coronary heart disease,this article systematically analyzes the Method of Dredging Collaterals with Pungent including the methods of dredging collaterals with pungent moisture,dredging collaterals with pungent warm,dredging collaterals with pungent aroma,and dredging collaterals with insect type drugs,to provide ideas for the treatment of angina pectoris in coronary heart disease. 展开更多
关键词 Coronary heart disease Angina pectoris Chest impediment Collateral diseases Impediment of heart collaterals Method of dredging Collaterals with Pungent
下载PDF
Impact of Dredging on Coastal Infrastructure: Case Studies from Okrika and Port Harcourt, Niger Delta
4
作者 Tamunoene Kingdom Simeon Abam Ferdinand Dumbari Giadom Robert Egwu Otu Iduma 《Journal of Geoscience and Environment Protection》 2023年第5期349-362,共14页
Sand excavations in river beds have compromised the safety of several bridges in recent years. Large scale sand mining from river beds is now common in the Niger Delta, due to the necessity of reclaiming land for deve... Sand excavations in river beds have compromised the safety of several bridges in recent years. Large scale sand mining from river beds is now common in the Niger Delta, due to the necessity of reclaiming land for development purposes and to meet construction needs in the region. There is currently no regulation as to where sand can be mined in river channels because of the lack of adequate understanding of the risks to coastal infrastructure involved with its abstraction. The phenomenon of bridge Abutment and bank failure induced by excessive dredging of sand river bed is considered. Two types of instability were distinguished, one relating to the equilibrium slope of the riverbed and the other riverbank instability. An empirical relationship in the form X<sub>s</sub> = 3Htan(90 - α) has been developed through analysis, supported by examples that a minimum distance of 94 m (for sand river beds) from a bridge should be observed for sand abstraction in order to guaranty the safety of bridge foundation. For clay riverbeds, slightly shorter minimum distances can be considered safe. The study further shows that the capacity of sand borrowing in river channels to generate bank instability is dependent on the composition and stratigraphy beneath the river bed. 展开更多
关键词 dredging IMPACTS Coastal Infrastructure Niger Delta
下载PDF
Coupling effect of cement-stabilization and biopolymer-modification on the mechanical behavior of dredged sediment
5
作者 Lei Lang Jiangshan Li +2 位作者 Xiao Huang Ping Wang Wei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3284-3298,共15页
Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredg... Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS. 展开更多
关键词 Dredged sediment(DS) STABILIZATION Biopolymer modification Mechanical properties MICRO-MECHANISM
下载PDF
Dredged marine soil stabilization using magnesia cement augmented with biochar/slag
6
作者 Chikezie Chimere Onyekwena Qi Li +5 位作者 Yong Wang Ishrat Hameed Alvi Wentao Li Yunlu Hou Xianwei Zhang Min Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1000-1017,共18页
Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materia... Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs. 展开更多
关键词 Dredged marine soil CO_(2)uptake Reactive magnesia BIOCHAR Ground granulated blast-furnace slag
下载PDF
Efficient stabilization of dredged sludge with high water content using an improved bio-carbonation of reactive magnesia cement method
7
作者 Rui Wang Chaosheng Tang +4 位作者 Xiaohua Pan Dianlong Wang Zhihao Dong Xiying Zhang Xiancai Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3760-3771,共12页
This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra... This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge. 展开更多
关键词 Reactive magnesia cement(RMC)biocarbonation Urea pre-hydrolysis Dredged sludge Efficient stabilization Unconfined compressive strength Microbially induced carbonate precipitation(MICP)
下载PDF
Restoration or Rehabilitation of the Faleme River Affected by Mining Activities: What Methods?
8
作者 Mor Diop Ibrahima Mall +3 位作者 Elhadji Mamadou Sonko Tidiane Diop Birane Niane Cheikh Mbow 《Journal of Water Resource and Protection》 CAS 2024年第4期233-263,共31页
The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout ... The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout the riverbed. To preserve this important watercourse and ensure the sustainability of its services, selecting and implementing appropriates restorations techniques is vital. In this context, the purpose of this paper was to present an overview of the actions and techniques that can be implemented for the restoration/rehabilitation of the Faleme. The methodological approach includes field investigation, water sampling, literature review with cases studies and SWOT analysis of the four methods presented: river dredging, constructed wetlands, floating treatment wetlands and chemical precipitation (coagulation and flocculation). The study confirmed the pollution of the river by suspended solids (TSS > 1100 mg/L) and heavy metals such as iron, zinc, aluminium, and arsenic. For the restoration methods, it was illustrated through description of their mode of operation and through some case studies presented, that all the four methods have proven their effectiveness in treating rivers but have differences in their costs, their sustainability (detrimental to living organisms or causing a second pollution) and social acceptance. They also have weaknesses and issues that must be addressed to ensure success of rehabilitation. For the case of the Faleme river, after analysis, floating treatment wetlands are highly recommended for their low cost, good removal efficiency if the vulnerability of the raft and buoyancy to strong waves and flow is under control. 展开更多
关键词 Faleme River River Restoration Constructed Wetlands dredging Floating Treatment Wetlands COAGULATION-FLOCCULATION
下载PDF
Numerical Modelling of Sediment Particle Transportation on a Navigation Inlet Using the Particle Tracking Model (PTM)
9
作者 Lloyd Ndlovu Zaid Mustafa 《Open Journal of Civil Engineering》 2024年第3期374-390,共17页
This paper investigates particle transportation using a numerical model application approach to understand the final fate of suspended sediment particle masses due to a dredging operation in a navigational harbor inle... This paper investigates particle transportation using a numerical model application approach to understand the final fate of suspended sediment particle masses due to a dredging operation in a navigational harbor inlet using PTM (Particle Tracking Model). The investigation applied PTM and simulated particle transportation at a navigational harbor called St Jerome Creek Inlet in Chesapeake Bay in Maryland. The United States Army Corps of Engineers (USACE), Maryland District, designed jetties for the inlet, which, when constructed, would minimize dredging requirements from once in a two-year period to once in a ten-year period. In the meantime, due to the frequent dredging requirements of the inlet, there exists a need to understand the fate of the suspended sediments from the dredging operations to assess the environmental impact on the aquatic environment and the coastal community. This study used PTM to simulate the transportation of sediments in a 30-day period during a dredging operation. Ten sediment source locations were selected as possible sites from which dredged materials could be introduced into the flow system. The model output was analyzed to draw conclusions. Results showed that most suspended sediment particle masses moved from their initial site locations and settled along the shoreline, whilst the sediments that found their way out of the inlet system towards the ocean migrated southward and settled approximately 6 miles at the tip of the mainland. The objective of the study is to track sediment particles from a dredging operation. This would be significant in tracking possible contaminants in an aquatic environment for future environmental management decisions. 展开更多
关键词 PTM Suspended Sediments dredging Particle Tracking
下载PDF
Tailings Dam Mining, Theoretical Considerations, and Circular Economy: A Review
10
作者 Eduardo da Rosa Aquino Vidal Félix Navarro Torres Irvyn Laurence Paniz 《Journal of Geoscience and Environment Protection》 2024年第9期77-92,共16页
Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal... Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal contents, emphasizing the need to evaluate the quality of these residues, especially considering the technological advancements in current concentration plants. An economic viability analysis associated with reusing these materials is crucial. From an environmental point of view, improving mining techniques for dams by considering both safety and feasibility is an advantageous option in decommissioning processes and alignment in the circular economy. In this context, representing these tailings in terms of grade quality and granulometry, as well as the associated contaminants, is essential. Geostatistical estimation and simulation methods are valuable tools for modeling tailings bodies, but they require a reliable sampling campaign to ensure acceptably low errors. From an operational perspective, tailings recovery can be conducted via dry methods, such as mechanical excavation, or hydraulic methods, such as dredging or hydraulic blasting. Dredging is a commonly used method, and cutter suction dredgers, which require pumping to transport fragmented material, are the most commonly used tools. In this paper, some practical applications of geostatistical methods for resource quantification in tailings dams will be discussed. Additionally, the main mining methods for tailings recovery in dams will be presented. Emphasis will be given to the dredging method, along with the key analysis parameters for sizing dredgers, pumps, and pipelines. 展开更多
关键词 Mining in Tailings Dams Geostatistical Methods Grade Quality dredging
下载PDF
Significance of dredging on sediment denitrification in Meiliang Bay,China:A year long simulation study 被引量:42
11
作者 Jicheng Zhong Chengxin Fan +4 位作者 Lu Zhang Edward Hall Shiming Ding Bao Li Guofeng Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第1期68-75,共8页
An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30... An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30 cm of sediment can significantly affect physico-chemical characteristics of sediments. Less degradation of organic matter in the dredged sediments was found during the experiment. Denitrification rates in the sediments were estimated by the acetylene blockage technique, and ranged from 21.6 to 102.7 nmol N2/(g dry weight (dw)-hr) for the undredged sediment and from 6.9 to 26.9 nmol N2/(g dw-hr) for dredged sediments. The denitrification rates in the undredged sediments were markedly higher (p 〈 0.05) than those in the dredged sediments throughout the incubation, with the exception of February 2006. The importance of various environmental factors on denitrification was assessed, which indicated that denitrification was regulated by temperature. Nitrate was probably the key factor limiting denitrification in both undredged and dredged sediments. Organic carbon played some role in determining the denitrification rates in the dredged sediments, but not in the undredged sediments. Sediment dredging influenced the mineralization of organic matter and denitrification in the sediment; and therefore changed the pattern of inherent cycling of nitrogen. 展开更多
关键词 sediment dredging DENITRIFICATION Taihu Lake
下载PDF
Influence of Sediment Dredging on Chemical Forms and Release of Phosphorus 被引量:28
12
作者 ZHONG Ji-Cheng YOU Ben-Sheng +3 位作者 FAN Cheng-Xin LI Bao ZHANG Lu DING Shi-Ming 《Pedosphere》 SCIE CAS CSCD 2008年第1期34-44,共11页
A laboratory experiment was carried out through a six-month incubation of undredged (control) and dredged cores to study the effect of sediment dredging on phosphorus (P) release from the sediment in the Taihu Lak... A laboratory experiment was carried out through a six-month incubation of undredged (control) and dredged cores to study the effect of sediment dredging on phosphorus (P) release from the sediment in the Taihu Lake. During the experiment, dredging the upper 30 cm layer could efficiently reduce the interstitial PO4^3-P concentration and different P forms in the sediment. The P fluxes of the undredged and dredged cores ranged from -5.1 to 3047.6 and -60.7 to 14.4μg·m^-2·d^-1, respectively. The fluxes of the dredged cores were generally lower than those of the control. Differences in the fluxes between the dredged and undredged cores were statistically significant (P 〈 0.05) from March to June 2006. The sediment P in the dredged cores had a lower release potential than that in the control. Dredging can be considered as a useful measure for rehabilitating the aquatic ecosystem after the external P loading in the Talhu Lake catchment was efficiently reduced. 展开更多
关键词 phosphorus forms phosphorous release sediment dredging Taihu Lake
下载PDF
Modelling Impact of Dredging and Dumping in Ebb-Flood Channel Systems 被引量:2
13
作者 HIBMA A WANG Z B +1 位作者 STIVE M J F Vriend H J de 《Transactions of Tianjin University》 EI CAS 2008年第4期271-281,共11页
For a channel-shoal system in a funnel-shaped basin the impact of dredging and dumping is investigated using a complex process-based model. First, the residual flow and sediment transport circulations are analysed for... For a channel-shoal system in a funnel-shaped basin the impact of dredging and dumping is investigated using a complex process-based model. First, the residual flow and sediment transport circulations are analysed for the channel-shoal pattern, which has emerged after a longterm model simulation. Results are compared to the Western Scheldt estuary, which forms the inspiration for this study. Subsequently, different dredge and dump scenarios are modelled, according to a conceptual model, in which ebb- and flood-channels and enclosed shoals form morphodynamic units (cells) with their own sediment circulation. Model results show that dumping sediment in a channel further reduces the channel depth and induces erosion in the opposite channel, which enhances tilting of the cross-section of the cell and eventually can lead to the degeneration of a multiple channel system into a single channel. The impact of different dredging and dumping cases agrees with results from a stability analysis. This means that this type of model applied to a realistic geometry can potentially be used for better prediction of the impact of human interventions. 展开更多
关键词 estuaries MORPHOLOGY numerical model channel SHOAL dredging DUMPING
下载PDF
Automatic Generation Method of Geological Cross-Sections in Dredging Engineering Based on 3D Solid NURBS Models 被引量:1
14
作者 缪正建 李明超 钟登华 《Transactions of Tianjin University》 EI CAS 2012年第6期393-400,共8页
An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS... An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS) technique,and a 2D profile can be calculated and generated automatically through Boolean operation to meet the demands of dredging projects.Moreover,an automatic marking method for geological attributes is put forward based on database technology,and the geological attributes include the profile name,scale,horizontal and vertical relative coordinates,geological lithology,and 2D standard lithology legend.At the same time,the automatic marking method can also provide an interactive mode for geological engineers to edit and modify the profile in the modeling system.Practical engineering applications show that the automatic generation method is a simple,flexible,fast and precise visual graphics rendering process that can create 2D standard profiles automatically and efficiently.This method also provides a convenient support tool for geological engineering digital analysis. 展开更多
关键词 dredging engineering 3D geological solid modeling automatic generation NURBS
下载PDF
Clinical analysis of pipeline dredging agent poisoning:A case report
15
作者 Ya-Qian Li Guang-Cai Yu +4 位作者 Long-Ke Shi Li-Wen Zhao Zi-Xin Wen Bao-Tian Kan Xiang-Dong Jian 《World Journal of Clinical Cases》 SCIE 2022年第28期10201-10207,共7页
BACKGROUND Pipeline dredging agents are new household deep cleaning products used to dredge blockages in kitchen and bathroom pipeline caused by grease,hair,vegetable residue,paper cotton fibre,and other organic subst... BACKGROUND Pipeline dredging agents are new household deep cleaning products used to dredge blockages in kitchen and bathroom pipeline caused by grease,hair,vegetable residue,paper cotton fibre,and other organic substances.Pipeline dredging agents are corrosive chemicals that can cause poisoning through corrosive damage to the digestive tract;however,this has not been reported clinically.Therefore,this report emphasises that oral pipeline dredging agent poisoning can cause corrosive damage to the digestive tract and may have serious health consequences.CASE SUMMARY A 68-year-old man consumed liquor(200 m L) at approximately 13:00 on April 22,2021.At approximately 16:00,his family found him unresponsive with blackened lips,blood spots in the corners of the mouth,and blood stains on the ground,as well as an empty bottle of a pipeline dredging agent.One hour later,he was admitted to the emergency department of a local hospital.Considering the empty bottle,he was suspected to have sustained severe corrosive damage to the digestive tract and was transferred to our department at 23:15 on April 22,2021.He developed dysphagia and intermittent fever and experienced difficulty in opening his mouth throughout his hospital stay.The patient’s condition gradually stabilised.However,he suddenly developed respiratory failure on day 12,and endotracheal intubation and ventilator-assisted ventilation were performed.However,the patient died after 1.5 h despite emergency rescue efforts.CONCLUSION Pipeline dredging agents are highly corrosive and may cause corrosive damage to the digestive tract and asphyxia upon consumption. 展开更多
关键词 ASPHYXIA Digestive tract injury Pipeline dredging agent POISONING Respiratory failure Case report
下载PDF
Evaluation of Dredging Operations for Tigris River within Baghdad, Iraq
16
作者 Ammar Ali Qusay Al-Suhail +1 位作者 Nadhir Al-Ansari Sven Knutsson 《Journal of Water Resource and Protection》 2014年第4期202-213,共12页
River Tigris divides Baghdad, capital of Iraq, in two parts. The reach of the river within Baghdad is about 60 km long. Many islands and bars are obstructing the flow of the river within Baghdad. To overcome this prob... River Tigris divides Baghdad, capital of Iraq, in two parts. The reach of the river within Baghdad is about 60 km long. Many islands and bars are obstructing the flow of the river within Baghdad. To overcome this problem, dredging operations started along most of Tigris River inside Baghdad City to remove many islands and side bars, which reduced the flooding capacity and the efficiency of water intakes. An examination for the dredging plan under process and two proposed additional plans was performed using the Hydrologic Engineering Centers River Analysis System software (HEC-RAS) for a 50 km long river reach to investigate whether they can recover the designed flooding capacity of the river or just improving it. Calibration and verification processes were implemented in the model using observed water levels at Sarai Baghdad gauging station and along the last 15 km of the river reach. Comparisons of computed water levels were conducted with those of previous studies and historical data. Some improvement of flood capacity was achieved based on the recorded data of the last three decades. Cautions about the water intakes should be considered to maintain their function with the expected drop in water level due to dredging operations. 展开更多
关键词 Baghdad dredging FLOODING Capacity Tigris RIVER
下载PDF
Study on Key Problems of a New Environmental Dredging Based on Ecological Protection and Subsequent Ecological Restoration
17
作者 HU Wei 《Meteorological and Environmental Research》 CAS 2012年第11期47-49,53,共4页
[Objective] The research aimed to study key problems of a new environmental dredging based on ecological protection and subsequent ecological restoration. [Method] People paid more attention to sediment pollutant remo... [Objective] The research aimed to study key problems of a new environmental dredging based on ecological protection and subsequent ecological restoration. [Method] People paid more attention to sediment pollutant removal in environmental dredging, without considering coming aquatic eco-restoration work after dredging. Factor affecting aquatic ecosystem existence and growth was screened, and ecological dredging manner was put forward. [Result] On the basis of analyzing dredging objective, effect and influence, started from ecological protection and subsequent ecological restoration, water depth and substrate were screened as priority control factors of the environmental sediment dredging. New manner of combining sediment dredging to reshape underwater terrain was put forward. [Conclusion] The research provided solution for water depth and substrate demands of the subsequent ecological restoration. 展开更多
关键词 Ecological protection Subsequent ecological restoration Environmental dredging Key problem China
下载PDF
Clinical observation on efficacy of compound of warming yang, descending turbidity and dredging collaterals in the treatment of diabetic kidney disease with Yin-Yang deficiency and blood stasis syndrome
18
作者 Li-Bei Zhan Xiao-Dong Xiong Kai Zhao 《Journal of Hainan Medical University》 2020年第21期26-31,共6页
Objective:To observe the clinical efficacy of compound of owarming yang,descending turbidity and dredging collaterals in the treatment of diabetic kidney disease with yin-yang deficiency and blood stasis syndrome.Meth... Objective:To observe the clinical efficacy of compound of owarming yang,descending turbidity and dredging collaterals in the treatment of diabetic kidney disease with yin-yang deficiency and blood stasis syndrome.Methods:Seventy-six patients of diabetic kidney disease with yin-yang deficiency and blood stasis syndrome were randomly divided into observation group and control group,thirty-eight cases in each group.The control group was given conventional western medicine treatment,while the observation group took compound of owarming yang,descending turbidity and dredging collaterals orally on the basis of conventional western medicine treatment.The course of treatment covered for one month.Before and after treatment,we observed the scores of traditional Chinese medicine symptoms,indicators of renal function[serum creatinine(Scr),blood urea nitrogen(BUN),microalbuminuria(MALB)],indicators of glucose metabolism[fasting plasma glucose(FPG),2-hour postprandial blood glucose(2hPG),glycosylated hemoglobin(HbAlc)],indicators of hemorheology[plasma viscosity(PV),platelet aggregation rate(PAR),fibrinogen(FIB)],Cystatin-C(Cys-C),C-reactive protein(CRP)in the two groups.Results:After treatment,the clinical effect of the observation group was significantly better than the control group(P<0.05).The scores of traditional Chinese medicine symptoms,indicators of renal function(Scr、BUN、UAER),indicators of glucose metabolism(FPG、2hPG、HbAlc),indicators of hemorheology(PV、PAR、FIB),Cys-C and CRP in the two groups were decreased significantly compared with those before treatment(P<0.05),and the decrease in the observation group was superior to that in the control group(P<0.05).Conclusion:Compound of warming yang,descending turbidity and dredging collaterals has remarkable efficacy in treating of diabetic kidney disease patients with yin-yang deficiency and blood stasis syndrome by alleviating clinical symptoms,glucose metabolism,renal function and microcirculatory disturbance,and the mechanism related to alleviation of microinflammation. 展开更多
关键词 Compound of warming yang Descending turbidity and dredging collaterals Diabetic kidney disease Yin-yang deficiency and blood stasis syndrome
下载PDF
Measuring the Total Economic Value of Traditional Sand Dredging in the Coastal Lagoon Complex of Grand-Nokoué(Benin)
19
作者 Metogbe B. Djihouessi Martin P. Aina +1 位作者 Ben-Vital Kpanou Nadine Kpondjo 《Journal of Environmental Protection》 2017年第13期1605-1621,共17页
Sand is a crucial resource for society’s development. Among the most exploited sand quarries in the world are the lagoon and wetland sand. Although mechanical sand dredging is the most spread technique, manual and tr... Sand is a crucial resource for society’s development. Among the most exploited sand quarries in the world are the lagoon and wetland sand. Although mechanical sand dredging is the most spread technique, manual and traditional techniques are still widely used in West Africa. The purpose of this paper is twofold: to describe traditional sand dredging (TSD), highlighting the procedure used and the structural organization of this activity, and to evaluate the total economic value of TSD in order to help decision making about wetland management. Therefore, TSD occurring in the coastal lagoon complex of Grand Nokoué (CLCGN) in Benin was investigated. Field surveys indicate that TSD is mainly dominated by men, about 93% of the actors. It required intense physical efforts including diving to the bottom of the lake and removing manually the sand in backed toward the surface of the water. TSD actors are organized in local associations which deliver extraction license and discuss with both the others actors and the local government. The total economic value of the benefits of TSD to the population, estimated using direct market value and replacement cost, was estimated at 2.44 million USD per year for 127,818 m3 of sand extracted. It is clear that introduction of mechanical sand dredging will increase the amount the sand removed and subsequently will increase some benefits such as reduction of flooding amplitude and mitigation of the filling of the lakes. However, mechanical sand removal will also considerably reduce the profit the local population makes from sand commercialization which currently represents 80% the total economic value of TSD. 展开更多
关键词 TRADITIONAL SAND dredging ECOSYSTEM Service Coastal Lake
下载PDF
Impacts of Dredging on Fluvial Geomorphology in the Jamuna River, Bangladesh
20
作者 Md Mosiur Rahman Md Sazadul Hasan +1 位作者 Moniruzzaman Khan Eusufzai Md Munsur Rahman 《Journal of Geoscience and Environment Protection》 2021年第6期1-20,共20页
Jamuna, a major braided river in Bangladesh, has an enormous hydrological impact on the surrounding areas and streams. Erosion and sedimentation in the Jamuna river cause a large flow fluctuation and floods round the ... Jamuna, a major braided river in Bangladesh, has an enormous hydrological impact on the surrounding areas and streams. Erosion and sedimentation in the Jamuna river cause a large flow fluctuation and floods round the year. Bangladesh Water Development Board has initiated a pilot capital dredging project in the Jamuna river in 2011-2012, aiming to guide the flow to reduce the risk of failure of the city area and right guide bundh of the Jamuna Bridge. This study explores the long-term role of dredging on river morphology us-ing erosion-sedimentation numerical modeling approaches. Primary data were employed in numerical models to estimate the erosion-sedimentation and compared outputs with the real-time cross-sectional variation at selected sections along the reach during 2012-2013. The analysis suggested that the rate of sedimentation is higher (60% to 80%), where the dredging alignment crosses through the existing sandbar/char. Moreover, a cross-section com-parison revealed that the channel near Sirajganj Hardpoint shifted towards the left (east) bank, and the channel within the study area developed very fast along the right (west) bank. However, satellite image analysis revealed that the major bankline shifting occurred from 2000 to 2010 and the channel shifting was observed from 2014 to 2018 along the reach, mostly, after the construction of some river training works. The variation of the channel per-sistence (40% - 100%) selected part of the study area in the channel inci-dence map, indicating the rapid dynamic behavior of the river morphology. This study showed a good agreement of measured data and simplified em-pirical relationships to predict the long-term morphodynamic behavior of the braided Jamuna river. 展开更多
关键词 Sediment Transport EROSION dredging Satellite Image River Morphology
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部