Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pr...Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.展开更多
Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days a...Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days and partitioned into acid-insoluble (MHA) and acid-soluble (MFA) fractions. The nitrogen forms in these polymers were studied by using the 15N cross polarization-magic angle spinning nuclear magnetic resonance (CPMAS NMR) technique in combination with chemical methods. The 15N nuclear magnetic resonance (NMR) data showed that while the yield, especially the MHA/MFA ratio, varied considerably with the concentrations of the reactants, the nitrogen distribution patterns of these polymers were quite similar.From 65% to 70% of nitrogen in them was in the secondary amide and/or indole form with 24%~25% present as aliphatic and/or aromatic ammes and 5% to 11% as pyrrole and/or pyrrole-like nitrogen. More than half (50%~77%) of the N in these polymers were nonhydrolyzable. The role of Maillard reaction in the formation of nonhydrolyzable nitrogen in soil organic matter is discussed.展开更多
The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control...The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.展开更多
The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. ...The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.展开更多
Cellulose derivatives have gained immense popularity as stabilizers for amorphous solid dispersion owing to their diverse physicochemical properties. More than 20 amorphous solid dispersion-based products that have be...Cellulose derivatives have gained immense popularity as stabilizers for amorphous solid dispersion owing to their diverse physicochemical properties. More than 20 amorphous solid dispersion-based products that have been approved for marketing consist of cellulose derivatives as stabilizers, thus highlighting their importance in generation of amorphous solid dispersions. These polymers offer numerous advantages like drug solubilization, crystallization inhibition and improvement in release patterns of drugs. Exploring their potential and exploiting their chemistry and p H responsive behaviour have led to the synthesis of new derivatives that has broadened the scope of the use of cellulose derivatives in amorphous formulation development. The present review aims to provide an overview of different mechanisms by which these cellulose derivatives inhibit the crystallization of drugs in the solid state and from supersaturated solution. A summary of different categories of cellulose derivatives along with the newly explored polymers has been provided. A special segment on strengths, weaknesses, opportunities, and threats(SWOT) analysis and critical quality attributes(CQAs) which affect the performance of the cellulose based amorphous solid dispersion will aid the researchers in identifying the major challenges in the development of cellulose based solid dispersion and serve as a guide for further formulation development.展开更多
The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different ...The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.展开更多
Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the ...Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system’s ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier.Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance.For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance.In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions) along with their evaluation parameters have also been reviewed.展开更多
Phase change materials(PCMs)are promising thermal energy storage materials due to their high specific latent heat.Conventional PCMs typically exploit the solid–liquid(s–l)transition.However,leakage and leaching are ...Phase change materials(PCMs)are promising thermal energy storage materials due to their high specific latent heat.Conventional PCMs typically exploit the solid–liquid(s–l)transition.However,leakage and leaching are common issues for solid–liquid PCMs,which have to be addressed before usage in practical applications.In contrast,solid–solid(s–s)PCMs would naturally overcome these issues due to their inherent form stability and homogeneity.In this study,we report a new type of s–s PCM based on chemically linked polyethylene glycol(PEG,the PCM portion)with polylactic acid(PLA,the support portion)in the form of a block co‐polymer.Solid‐solid latent heat of up to 56 J/g could be achieved,with melting points of between 44°C and 55°C.For comparison,PEG was physically mixed into a PLA matrix to form a PEG:PLA composite.However,the composite material saw leakage of up to 9%upon heating,with a corresponding loss in thermal storage capacity.In contrast,the mPEG/PLA block co‐polymers were found to be completely homogeneous and thermally stable even when heated above its phase transition temperature,with no observable leakage,demonstrating the superiority of chemical linking strategies in ensuring form stability.展开更多
基金Project(50574061) supported by the National Natural Science Foundation of China
文摘Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.
文摘Water-soluble, nondialyzable Maillard polymers were prepared by reacting D-xylose with 15N-glycine (and/or glycine) at 68 ℃ and pH 8.0 at equimolar concentrations of 1, 0.5 and 0.1 mol L-1, respectively,for 13 days and partitioned into acid-insoluble (MHA) and acid-soluble (MFA) fractions. The nitrogen forms in these polymers were studied by using the 15N cross polarization-magic angle spinning nuclear magnetic resonance (CPMAS NMR) technique in combination with chemical methods. The 15N nuclear magnetic resonance (NMR) data showed that while the yield, especially the MHA/MFA ratio, varied considerably with the concentrations of the reactants, the nitrogen distribution patterns of these polymers were quite similar.From 65% to 70% of nitrogen in them was in the secondary amide and/or indole form with 24%~25% present as aliphatic and/or aromatic ammes and 5% to 11% as pyrrole and/or pyrrole-like nitrogen. More than half (50%~77%) of the N in these polymers were nonhydrolyzable. The role of Maillard reaction in the formation of nonhydrolyzable nitrogen in soil organic matter is discussed.
文摘The plastic cement belongs to a sort of polymer material, the chemical composition is very complex, and the plastic cement work-piece is generally manufactured by die press forming. Aimed at being difficult to control in parameters of forming process, the paper explored the humanoid based intelligence control strategy. In the paper, it made the anatomy in control puzzle resulted in uncertainty such as chemical component of plastic cement etc., summarized up the characteristic of cybernetics in forming process, researched on the humanoid based intelligence control strategy, and constructed the control algorithm of forming process in plastic cement work-piece. Taking the process experiment of temperature and pressure control as an example, it validated the good dynamic and static control quality through simulation of control algorithm constructed in this paper. The experimental results show that the control algorithm explored in this paper is reasonably available.
文摘The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.
基金financial support from the De-partment of Pharmaceuticals(Do P),Ministry of Chemicals and Fertilizers,Govt.of India
文摘Cellulose derivatives have gained immense popularity as stabilizers for amorphous solid dispersion owing to their diverse physicochemical properties. More than 20 amorphous solid dispersion-based products that have been approved for marketing consist of cellulose derivatives as stabilizers, thus highlighting their importance in generation of amorphous solid dispersions. These polymers offer numerous advantages like drug solubilization, crystallization inhibition and improvement in release patterns of drugs. Exploring their potential and exploiting their chemistry and p H responsive behaviour have led to the synthesis of new derivatives that has broadened the scope of the use of cellulose derivatives in amorphous formulation development. The present review aims to provide an overview of different mechanisms by which these cellulose derivatives inhibit the crystallization of drugs in the solid state and from supersaturated solution. A summary of different categories of cellulose derivatives along with the newly explored polymers has been provided. A special segment on strengths, weaknesses, opportunities, and threats(SWOT) analysis and critical quality attributes(CQAs) which affect the performance of the cellulose based amorphous solid dispersion will aid the researchers in identifying the major challenges in the development of cellulose based solid dispersion and serve as a guide for further formulation development.
基金the support of the National Natural Science Foundation of China(Nos.51803177,51973191,51533008,and 51636002)National Key R&D Program of China(No.2016YFA0200200)+5 种基金the China Postdoctoral Science Foundation(No.2021M690134)Hundred Talents Program of Zhejiang University(188020*194231701/113)Key Research and Development Plan of Zhejiang Province(2018C01049)the National Postdoctoral Program for Innovative Talents(No.BX201700209)the Fundamental Research Funds for the Central Universities(2021FZZX001-17),the Natural Science Foundation of Jiangsu Province(BK20210353)the Fundamental Research Funds for the Central Universities(No.30920041106).
文摘The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
基金Vivekanand Education Society’s College of Pharmacy, Chembur, Mumbai, for their support and encouragement
文摘Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system’s ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier.Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance.For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance.In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions) along with their evaluation parameters have also been reviewed.
基金Science and Engineering Research Council,Grant/Award Number:GAP/2019/00314。
文摘Phase change materials(PCMs)are promising thermal energy storage materials due to their high specific latent heat.Conventional PCMs typically exploit the solid–liquid(s–l)transition.However,leakage and leaching are common issues for solid–liquid PCMs,which have to be addressed before usage in practical applications.In contrast,solid–solid(s–s)PCMs would naturally overcome these issues due to their inherent form stability and homogeneity.In this study,we report a new type of s–s PCM based on chemically linked polyethylene glycol(PEG,the PCM portion)with polylactic acid(PLA,the support portion)in the form of a block co‐polymer.Solid‐solid latent heat of up to 56 J/g could be achieved,with melting points of between 44°C and 55°C.For comparison,PEG was physically mixed into a PLA matrix to form a PEG:PLA composite.However,the composite material saw leakage of up to 9%upon heating,with a corresponding loss in thermal storage capacity.In contrast,the mPEG/PLA block co‐polymers were found to be completely homogeneous and thermally stable even when heated above its phase transition temperature,with no observable leakage,demonstrating the superiority of chemical linking strategies in ensuring form stability.