Borehole instability and reservoir damage had become the international technical problems of petroleum exploration and development of complicated area, and the water of drilling fluid invading borehole wall and petrol...Borehole instability and reservoir damage had become the international technical problems of petroleum exploration and development of complicated area, and the water of drilling fluid invading borehole wall and petroleum reservoir was the main cause of borehole instability and reservoir damage. In order to prevent the water of drilling fluid invading borehole wall and petroleum reservoir, domestic and foreign scholars recently put forward the technology of ultra-low permeable drilling fluid. Film forming agent was the key treating agent of ultra-low permeable drilling fluid, the film forming agent (HN-1) was developed, which did not affect properties of the drilling fluid and could decrease the filter loss of drilling fluid applied in Enping 24-2 oil field. Based on this research, ultra-low permeable drilling fluid could be applied to Enping 24-2 oil field. By the methods of testing ultra-low permeable drilling fluid properties, the drilling fluid invasion sand-bed depth, drilling fluid high temperature/high pressure (HTHP) sand-bed filter loss, the pressure-bearing ability of rock core and the ability of reservoir protection were studied. By synergistic effect, HN-1 containing the organic silicate and natural fiber polymer modified by organic amine prevented the liquid and solids in drilling fluid invading reservoir, decreased drilling fluid invasion sand-bed depth and drilling fluid HTHP sand-bed filter loss, improved the pressure-bearing ability of rock core and the ability of reservoir protection. The drilling fluid could decrease reservoir damage to the maximal degree, and it offered efficiency guarantee for exploitation Enping 24-2 oil field.展开更多
Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pr...Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.展开更多
This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Ba...This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field.展开更多
Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and...Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.展开更多
文摘Borehole instability and reservoir damage had become the international technical problems of petroleum exploration and development of complicated area, and the water of drilling fluid invading borehole wall and petroleum reservoir was the main cause of borehole instability and reservoir damage. In order to prevent the water of drilling fluid invading borehole wall and petroleum reservoir, domestic and foreign scholars recently put forward the technology of ultra-low permeable drilling fluid. Film forming agent was the key treating agent of ultra-low permeable drilling fluid, the film forming agent (HN-1) was developed, which did not affect properties of the drilling fluid and could decrease the filter loss of drilling fluid applied in Enping 24-2 oil field. Based on this research, ultra-low permeable drilling fluid could be applied to Enping 24-2 oil field. By the methods of testing ultra-low permeable drilling fluid properties, the drilling fluid invasion sand-bed depth, drilling fluid high temperature/high pressure (HTHP) sand-bed filter loss, the pressure-bearing ability of rock core and the ability of reservoir protection were studied. By synergistic effect, HN-1 containing the organic silicate and natural fiber polymer modified by organic amine prevented the liquid and solids in drilling fluid invading reservoir, decreased drilling fluid invasion sand-bed depth and drilling fluid HTHP sand-bed filter loss, improved the pressure-bearing ability of rock core and the ability of reservoir protection. The drilling fluid could decrease reservoir damage to the maximal degree, and it offered efficiency guarantee for exploitation Enping 24-2 oil field.
基金Project(50574061) supported by the National Natural Science Foundation of China
文摘Low-permeability dense reservoirs,including micro-fractured reservoirs,are commonly characterized by high content of clay substances,high original water saturation,high sensitivity to invasive fluids,high capillary pressure,complicated structure and anisotropic,high flow-resistance and micro pore throats etc,.Generally they also have lots of natural micro fractures,probably leading to stress sensibility.Main damaging factors in such reservoirs are water-sensibility and water-blocking caused by invasive fluids during drilling and production operations.Once damaged,formation permeability can rarely recovered.Numerous studies have shown that damaging extent of water-blocking ranges from 70% to 90%.Main damaging mechanisms and influencing factors of water-blocking were systematically analyzed.Also some feasible precaution or treating approaches of water-blocking were put forward.In a laboratory setting,a new multi-functional drilling fluid composed mainly of amphion polymer,sulfonation polymer,high effectively preventive water-blocking surfactants,ideal packing temporary bridging agents(TBA) and film-forming agents,etc.,were developed.New low-damage drilling fluids has many advantages,such as good rheological properties,excellent effectiveness of water-blocking prevention,good temporary plugging effect,low filtration and ultra-low permeability(API filtration≤5 mL,HTHP filtration≤10 mL,mud cake frictional coefficient≤0.14,permeability recovery>81%),can efficiently prevent or minimize damage,preserve natural formation and enhance comprehensive development-investment effect in TUHA Jurassic dense sandstone reservoir formation with low-permeability,the only one developing integrated condense gas field.Some references can be provided to similar reservoir formations.
基金the Committee of the National HighTechnology Research and Development Program of China(863 Program) for providing financial support for thisresearch project (Project No.2006AA06A109)the support provided by the Changjiang Scholarsand Innovative Research Team(No.IRT0411),Ministry ofEducation,China.
文摘This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field.
文摘Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.