In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,an...In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.展开更多
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio...With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.展开更多
Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress grad...Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress gradient. The optimum drilling location and diameter were studied through analysis of different locations and diameters. By analyzing the effects of flank holes and an additional hole, drilling advice was proposed and fatigue testing of the cracks in a steel bridge deck with a crack stop hole was conducted. The results show that the stress at the crack tip with a crack stop hole decreased, and the major principal stress around the hole was distributed accordingly. The optimum position of the crack stop hole centre was where the centre of the crack stop hole was situated behind the crack and the hole edge coincided with the crack tip. Therefore, hole diameters larger than 8 mm, or those weakening the section by 10%, were suggested as the best diameters. In terms of multi-hole crack stopping, a flank hole was not recommended. The optimum horizontal position of flank holes was at a distance of 1/4 of a single hole diameter from, and in front of, the single hole. Besides, the experiment showed that crack stop hole could only prevent cracks from growing and had no influence on crack growth rate.展开更多
Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is a...Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.展开更多
The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic f...The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic forces of cutting fluid could be taken into consideration in the model of drilling shaft system. Based on the isoparametric finite element method, the variational form of Reynolds equation in hydrodynamic fluid was used to calculate nonlinear hydrodynamic forces and their Jacobian matrices simultaneously. In the stability analysis, a new shooting method for rapidly determining the periodic orbit of the nonlinear drilling shaft system and its period was presented by rebuilding the traditional shooting method and changing the time scale. Through the combination of theories with experiment, the correctness and effectiveness of the above methods are verified by using the Floquet theory. The results show that the mass eccentricity can inhibit the whirling motion of drilling shaft to some extent.展开更多
Cutting parameters were evaluated and optimized based on multiple performance characteristics including tool wear and size error of drilled hole. Taguchi's L27, 3-level, 4-factor orthogonal array was used for the tes...Cutting parameters were evaluated and optimized based on multiple performance characteristics including tool wear and size error of drilled hole. Taguchi's L27, 3-level, 4-factor orthogonal array was used for the tests. It is shown that generally abrasive wear and built up edge (BUE) formation were seen in the tool wear, and the comer wear was also of major importance. Flank wear of the cutting tool was found to be mostly dependent upon particle mass fraction, followed by feed rate, drill hardness and spindle speed, respectively. Among the tools used, TiAlN coated carbide drills showed the best performance with regard to the tool wear as well as hole size. Grey relational analysis indicated that drill material was the more influential parameter than feed rate and spindle speed. The results revealed that optimal combination of the drilling parameters could be used to obtain both minimum tool wear and diametral error.展开更多
Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttin...Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.展开更多
The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stres...The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.展开更多
In the past two decades, numerous large-diameter rock-socketed piles were constructed in China to support foundations of skyscrapers, great bridges or to retain soil in potential geological hazard areas. However, dril...In the past two decades, numerous large-diameter rock-socketed piles were constructed in China to support foundations of skyscrapers, great bridges or to retain soil in potential geological hazard areas. However, drilling large-diameter rock-socketed pile holes with conventional drilling method such as rotary drilling or cable tool drilling is time-consuming and the cost is usually very high. In order to drill large-diameter rocksocketed pile holes faster at relatively low cost, the FGC15A large-diameter DTH air hammer drilling system was developed in 1987 and was given the second-clasa award by Ministry of Geology and Mineral Resources in 1991. Since it was innovated the drilling system has been used in more than twenty important and tough pro- jects on land, and wonderful results were acquired. At the same time the large-diameter DTH air hammer drilling system was improved continuously. The FGC15D is the latest version of the technique.展开更多
The ages of coral reef samples from several shallow drill holes in the South China Sea are determined by ESR and U-series (230Th/234U) methods. The experimental results show ideal agreement between ESR and U-series ag...The ages of coral reef samples from several shallow drill holes in the South China Sea are determined by ESR and U-series (230Th/234U) methods. The experimental results show ideal agreement between ESR and U-series ages and that the coral reefs were formed in the early Holocene. In the determination of natural total dose of coral reef by use of the additive dose method good results can be obtained by exponential fitting, no matter how the effect of dose saturation is. It was found that the ratio of the natural ESR signal intensity ( I0) to the ESR signal intensity at dose saturation ( Imax) of sample can reflect the significance of a irradiation efficiency-k value. Using the k value of sample determined by the formula given in this paper, the precision of ESR dating of marine carbonates can be improved.展开更多
Residual stresses in ion-implanted NiTi alloy are measured by a combined method ofMoir6 interferometry and hole-drilling. Oxygen ions are implanted into the NiTi alloy under a voltage of 30 kV by a dose of 1.0×10...Residual stresses in ion-implanted NiTi alloy are measured by a combined method ofMoir6 interferometry and hole-drilling. Oxygen ions are implanted into the NiTi alloy under a voltage of 30 kV by a dose of 1.0×10^17ions/cm^2 for one hour. Subsequently, in order to avoid dimensional error, a hole is drilled exactly in the center of the sample. The distribution of residual stresses around the hole is measured. It is indicated that the method which combines the Moire interferometry with hole-drilling is able to be used to measure residual stresses produced by ion implantation.展开更多
A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thr...A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thread connection is described. The relative amplitude variation, change of power pulse time and energy in their propagation throughout the drilling tool are determined. A possibility of the efficient power pulse transfer along the drill string to the rock destruction tools with new nipple connections which allow automating the make-up and breakout system of drill pipe was supported by experiments.展开更多
Due to the attractive performances such as the ability of beam focus,broadband,multi-beam scanning and other features,Luneburg lens antennas are applied in multi-beam antenna,which overcomes the problem of gain loss p...Due to the attractive performances such as the ability of beam focus,broadband,multi-beam scanning and other features,Luneburg lens antennas are applied in multi-beam antenna,which overcomes the problem of gain loss produced by multi-beam parabolic antenna.Based on 3-D printing technique,Luneburg lens antennas by drilling holes are studied.Permittivity and loss tangent of the equivalent lens materials can be influenced by original materials,hole shapes,hole directions,and porosity.After tests,polystyrene with waxes may be the most appropriate materials for Luneburg lens with high strength.Permittivity with the shape of triangle is the lowest due to the homogeneity.Relative permittivities with the direction at a range of 15°-45°are lower while loss tangent at a range of 0°-30°.Radial directional holes are more appropriate for Luneburg lens.The relative permittivity is decreased with the increment of porosity.After calculations,the forecasts calculated by Looyenga and A-BG theory are more precise.Finally,Luneburg lens with two layers is fabricated by 3-D printing.展开更多
Manufacturing accuracy, especially position accuracy of fastener holes, directly affects service life and security of aircraft. The traditional modification has poor robustness, while the modification based on laser t...Manufacturing accuracy, especially position accuracy of fastener holes, directly affects service life and security of aircraft. The traditional modification has poor robustness, while the modification based on laser tracker costs too much. To improve the relative position accuracy of aircraft assembly drilling, and ensure the hole-edge distance requirement, a method was presented to modify the coordinates of drilling holes. Based on online inspecting two positions of pre-assembly holes and their theoretical coordinates, the spatial coordinate transformation matrix of modification could be calculated. Thus the straight drilling holes could be modified. The method improves relative position accuracy of drilling on simple structure effectively. And it reduces the requirement of absolute position accuracy and the cost of position modification. And the process technician also can use this method to decide the position accuracy of different pre-assembly holes based on the accuracy requirement of assembly holes.展开更多
Based on the content of radioactive elements (U, Th, K) of strata in two drill holes in the Fuzhou basin, and combined with the result of spore_pollen analysis, the relationship between radioactivity and lithology and...Based on the content of radioactive elements (U, Th, K) of strata in two drill holes in the Fuzhou basin, and combined with the result of spore_pollen analysis, the relationship between radioactivity and lithology and deposit environments is discussed and the results show that the content of radioactive substances is related to the granularity and lithology in sediment, and it is higher in argillaceous sediment (e.g. silt and clay), lower in sand sediment and in the middle in gravels between the above two kinds of sediment. The content of radioactive substances is also related to paleoclimate. A warm and humid environment is propitious to the deposition of radioactive substances, while a cool and dry climate is just the reverse.展开更多
μEDM(micro-electrical discharge machining)is a process for machining conductive materials without mechanical contact;it is particularly suitable for machining hard materials.The principle consists in creating electri...μEDM(micro-electrical discharge machining)is a process for machining conductive materials without mechanical contact;it is particularly suitable for machining hard materials.The principle consists in creating electrical discharges between a micro-tool and a workpiece,both of which are immersed in a dielectric.It is a complementary process to mechanical,laser,micro-machining techniques,and even to techniques derived from silicon microtechnology(RIE,DRIE,LIGA).However,the resolution ofμEDM is limited;it depends on several electrical and physical parameters.The goal of this paper is to characterize the holes obtained by drilling usingμEDM with different micro-tool diameters(Φ=250μm;Φ=80μm;Φ=40μm;Φ=20μm)for an experimental time of t=2 h.The results obtained let us conclude that a large diameter micro-tool(Φ=250μm)leads to removing a larger amount of material(43×10^(5)μm^(3))than small diameters:Φ=80μm;Φ=40μm;Φ=20μm where the removed volume is equal to 2.6×10^(5)μm^(3);105μm^(3);0.4×10^(5)μm^(3),respectively.The electrode-tool diameter influences the maximum depth of the holes;a diameter ofΦ=250μm generates a hole where the maximum depth is 170μm while small diameters:Φ=80μm;Φ=40μm;Φ=20μm provide holes with a depth of 82μm;51μm;50μm respectively.Through these experiments,we can also conclude that the lateral gap of the holes is almost constant.It is about 40μm whatever the diameter.展开更多
Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calib...Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calibration coefficients were modified in the plasticity deformation stage based on the distortion energy theory. The calibration experiment of calibration coefficients was simulated by the finite element model, and the plasticity modification formulas of 7075 aluminum alloy were obtained. From the results of uniaxial tensile loading test, the measuring errors of high residual stress are significantly reduced from-4.071%~53.440% to-5.140% ~ 0.609% after the plasticity modification. This work provides an effective way to expand the application of hole-drilling method.展开更多
基金the financial support from the Natural Science Foundation of China(Grant Nos.52222401,52234002,52394250,52394255)Science Foundation of China University of Petroleum,Beijing(Grant No.ZXZX20230083)other projects(ZLZX2020-01-07-01)。
文摘In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.
文摘With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.
基金Projects(51278166,51478163)supported by the National Natural Science Foundation of ChinaProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘Force analysis using a compact tension model, as recommended by ASTM, was carried out on a crack stop hole. The stress before, and after, drilling the hole was compared in terms of stress concentration and stress gradient. The optimum drilling location and diameter were studied through analysis of different locations and diameters. By analyzing the effects of flank holes and an additional hole, drilling advice was proposed and fatigue testing of the cracks in a steel bridge deck with a crack stop hole was conducted. The results show that the stress at the crack tip with a crack stop hole decreased, and the major principal stress around the hole was distributed accordingly. The optimum position of the crack stop hole centre was where the centre of the crack stop hole was situated behind the crack and the hole edge coincided with the crack tip. Therefore, hole diameters larger than 8 mm, or those weakening the section by 10%, were suggested as the best diameters. In terms of multi-hole crack stopping, a flank hole was not recommended. The optimum horizontal position of flank holes was at a distance of 1/4 of a single hole diameter from, and in front of, the single hole. Besides, the experiment showed that crack stop hole could only prevent cracks from growing and had no influence on crack growth rate.
文摘Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.
基金Project(2007CB707706) supported by the Major State Basic Research Development Program of ChinaProjects(2007E213,2007E203) supported by the Natural Science Foundation of Shaanxi Province,China
文摘The stability and nonlinear dynamic behavior of drilling shaft system in copper stave deep hole drilling were analyzed. The effects of the fluctuation of the cutting force, the mass eccentricity and the hydrodynamic forces of cutting fluid could be taken into consideration in the model of drilling shaft system. Based on the isoparametric finite element method, the variational form of Reynolds equation in hydrodynamic fluid was used to calculate nonlinear hydrodynamic forces and their Jacobian matrices simultaneously. In the stability analysis, a new shooting method for rapidly determining the periodic orbit of the nonlinear drilling shaft system and its period was presented by rebuilding the traditional shooting method and changing the time scale. Through the combination of theories with experiment, the correctness and effectiveness of the above methods are verified by using the Floquet theory. The results show that the mass eccentricity can inhibit the whirling motion of drilling shaft to some extent.
文摘Cutting parameters were evaluated and optimized based on multiple performance characteristics including tool wear and size error of drilled hole. Taguchi's L27, 3-level, 4-factor orthogonal array was used for the tests. It is shown that generally abrasive wear and built up edge (BUE) formation were seen in the tool wear, and the comer wear was also of major importance. Flank wear of the cutting tool was found to be mostly dependent upon particle mass fraction, followed by feed rate, drill hardness and spindle speed, respectively. Among the tools used, TiAlN coated carbide drills showed the best performance with regard to the tool wear as well as hole size. Grey relational analysis indicated that drill material was the more influential parameter than feed rate and spindle speed. The results revealed that optimal combination of the drilling parameters could be used to obtain both minimum tool wear and diametral error.
文摘Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.
基金the National Natural Science Foundation of China (10772117, 10572089)
文摘The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.
文摘In the past two decades, numerous large-diameter rock-socketed piles were constructed in China to support foundations of skyscrapers, great bridges or to retain soil in potential geological hazard areas. However, drilling large-diameter rock-socketed pile holes with conventional drilling method such as rotary drilling or cable tool drilling is time-consuming and the cost is usually very high. In order to drill large-diameter rocksocketed pile holes faster at relatively low cost, the FGC15A large-diameter DTH air hammer drilling system was developed in 1987 and was given the second-clasa award by Ministry of Geology and Mineral Resources in 1991. Since it was innovated the drilling system has been used in more than twenty important and tough pro- jects on land, and wonderful results were acquired. At the same time the large-diameter DTH air hammer drilling system was improved continuously. The FGC15D is the latest version of the technique.
文摘The ages of coral reef samples from several shallow drill holes in the South China Sea are determined by ESR and U-series (230Th/234U) methods. The experimental results show ideal agreement between ESR and U-series ages and that the coral reefs were formed in the early Holocene. In the determination of natural total dose of coral reef by use of the additive dose method good results can be obtained by exponential fitting, no matter how the effect of dose saturation is. It was found that the ratio of the natural ESR signal intensity ( I0) to the ESR signal intensity at dose saturation ( Imax) of sample can reflect the significance of a irradiation efficiency-k value. Using the k value of sample determined by the formula given in this paper, the precision of ESR dating of marine carbonates can be improved.
基金National Natural Science Foundation of China (10572155)
文摘Residual stresses in ion-implanted NiTi alloy are measured by a combined method ofMoir6 interferometry and hole-drilling. Oxygen ions are implanted into the NiTi alloy under a voltage of 30 kV by a dose of 1.0×10^17ions/cm^2 for one hour. Subsequently, in order to avoid dimensional error, a hole is drilled exactly in the center of the sample. The distribution of residual stresses around the hole is measured. It is indicated that the method which combines the Moire interferometry with hole-drilling is able to be used to measure residual stresses produced by ion implantation.
基金supported by the research Grant within the framework of the Federal Target Program ‘Scientific and Academic Staff of Innovative Russia’ during the years of 2009–2013competitive activity 1.3.1. ‘Research conducted by young researchers, Ph.D. holders’, the project theme ‘Research of power pulse interaction in a drilling tool and in rock mass in underground borehole drilling’
文摘A possibility of the efficient use of rotary percussive drilling to provide drilling smaller diameter holes(40–70 mm) both in mining and prospecting is disclosed herein. A new construction designed for the nipple thread connection is described. The relative amplitude variation, change of power pulse time and energy in their propagation throughout the drilling tool are determined. A possibility of the efficient power pulse transfer along the drill string to the rock destruction tools with new nipple connections which allow automating the make-up and breakout system of drill pipe was supported by experiments.
基金supported by the Science and Technology Programme of Shijiazhuang under Grant 151130081A
文摘Due to the attractive performances such as the ability of beam focus,broadband,multi-beam scanning and other features,Luneburg lens antennas are applied in multi-beam antenna,which overcomes the problem of gain loss produced by multi-beam parabolic antenna.Based on 3-D printing technique,Luneburg lens antennas by drilling holes are studied.Permittivity and loss tangent of the equivalent lens materials can be influenced by original materials,hole shapes,hole directions,and porosity.After tests,polystyrene with waxes may be the most appropriate materials for Luneburg lens with high strength.Permittivity with the shape of triangle is the lowest due to the homogeneity.Relative permittivities with the direction at a range of 15°-45°are lower while loss tangent at a range of 0°-30°.Radial directional holes are more appropriate for Luneburg lens.The relative permittivity is decreased with the increment of porosity.After calculations,the forecasts calculated by Looyenga and A-BG theory are more precise.Finally,Luneburg lens with two layers is fabricated by 3-D printing.
文摘Manufacturing accuracy, especially position accuracy of fastener holes, directly affects service life and security of aircraft. The traditional modification has poor robustness, while the modification based on laser tracker costs too much. To improve the relative position accuracy of aircraft assembly drilling, and ensure the hole-edge distance requirement, a method was presented to modify the coordinates of drilling holes. Based on online inspecting two positions of pre-assembly holes and their theoretical coordinates, the spatial coordinate transformation matrix of modification could be calculated. Thus the straight drilling holes could be modified. The method improves relative position accuracy of drilling on simple structure effectively. And it reduces the requirement of absolute position accuracy and the cost of position modification. And the process technician also can use this method to decide the position accuracy of different pre-assembly holes based on the accuracy requirement of assembly holes.
基金This project was granted bythe National Developmentand Reform Commission.Item Number:20041138
文摘Based on the content of radioactive elements (U, Th, K) of strata in two drill holes in the Fuzhou basin, and combined with the result of spore_pollen analysis, the relationship between radioactivity and lithology and deposit environments is discussed and the results show that the content of radioactive substances is related to the granularity and lithology in sediment, and it is higher in argillaceous sediment (e.g. silt and clay), lower in sand sediment and in the middle in gravels between the above two kinds of sediment. The content of radioactive substances is also related to paleoclimate. A warm and humid environment is propitious to the deposition of radioactive substances, while a cool and dry climate is just the reverse.
文摘μEDM(micro-electrical discharge machining)is a process for machining conductive materials without mechanical contact;it is particularly suitable for machining hard materials.The principle consists in creating electrical discharges between a micro-tool and a workpiece,both of which are immersed in a dielectric.It is a complementary process to mechanical,laser,micro-machining techniques,and even to techniques derived from silicon microtechnology(RIE,DRIE,LIGA).However,the resolution ofμEDM is limited;it depends on several electrical and physical parameters.The goal of this paper is to characterize the holes obtained by drilling usingμEDM with different micro-tool diameters(Φ=250μm;Φ=80μm;Φ=40μm;Φ=20μm)for an experimental time of t=2 h.The results obtained let us conclude that a large diameter micro-tool(Φ=250μm)leads to removing a larger amount of material(43×10^(5)μm^(3))than small diameters:Φ=80μm;Φ=40μm;Φ=20μm where the removed volume is equal to 2.6×10^(5)μm^(3);105μm^(3);0.4×10^(5)μm^(3),respectively.The electrode-tool diameter influences the maximum depth of the holes;a diameter ofΦ=250μm generates a hole where the maximum depth is 170μm while small diameters:Φ=80μm;Φ=40μm;Φ=20μm provide holes with a depth of 82μm;51μm;50μm respectively.Through these experiments,we can also conclude that the lateral gap of the holes is almost constant.It is about 40μm whatever the diameter.
基金supported by the Natural Science Foundation of Fujian Provinceof China(No.2018J01082)the China Scholarship Council(No.201806315006)the National Natural Science Foundation of China(No.51305371)
文摘Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calibration coefficients were modified in the plasticity deformation stage based on the distortion energy theory. The calibration experiment of calibration coefficients was simulated by the finite element model, and the plasticity modification formulas of 7075 aluminum alloy were obtained. From the results of uniaxial tensile loading test, the measuring errors of high residual stress are significantly reduced from-4.071%~53.440% to-5.140% ~ 0.609% after the plasticity modification. This work provides an effective way to expand the application of hole-drilling method.