An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent...An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent to them in spatial geometry, and the center point of the sphere and the radius can be calculated. The shape of a workpiece surface in the machining area is approximately regarded as such a sphere. A vector from the machining point to the center point is thus approximately regarded as a normal vector to the workpiece surface. By this principle, the algorithm first measures four coordinates on the curve in the drilling region using four sensors and calculates the normal vector at the drilling point, then calculates the error between the normal vector and the axis of the spindle. According to this error, the algorithm further figures out the angles of two revolving axes on the end- effector and the displacements of three linear axes on the robot main body, thus it implements the function of adjusting the spindle to be perpendicular to the curve at the drilling point. Simulation results of two kinds of curved surfaces show that accuracy and efficiency can be realized using the proposed algorithm.展开更多
Robotic drilling technology for aircraft flexible assembly is challenging and is under active investigation.In this work,a feed system for robotic drilling end-effector is modeled.Two control algorithms with different...Robotic drilling technology for aircraft flexible assembly is challenging and is under active investigation.In this work,a feed system for robotic drilling end-effector is modeled.Two control algorithms with different computational complexity are proposed and compared.Based on reduced-order state observer,a pole placement controller is proposed firstly,and then a model reference adaptive controller is designed.An experiment platform is established in Matlab xPC environment to validate the effect of the two controllers.The experiment results show that the model reference adaptive controller delivers a higher tracking accuracy after the adaptive transient procedure than the pole placement controller does.展开更多
To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
基金National Science and Technology Major Project(No.2009ZX04014-023)
文摘An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent to them in spatial geometry, and the center point of the sphere and the radius can be calculated. The shape of a workpiece surface in the machining area is approximately regarded as such a sphere. A vector from the machining point to the center point is thus approximately regarded as a normal vector to the workpiece surface. By this principle, the algorithm first measures four coordinates on the curve in the drilling region using four sensors and calculates the normal vector at the drilling point, then calculates the error between the normal vector and the axis of the spindle. According to this error, the algorithm further figures out the angles of two revolving axes on the end- effector and the displacements of three linear axes on the robot main body, thus it implements the function of adjusting the spindle to be perpendicular to the curve at the drilling point. Simulation results of two kinds of curved surfaces show that accuracy and efficiency can be realized using the proposed algorithm.
基金the National Natural Science Foundation of China(No.51765031)Natural Science Foundation of Gansu Province(No.20JR5RA457).
文摘Robotic drilling technology for aircraft flexible assembly is challenging and is under active investigation.In this work,a feed system for robotic drilling end-effector is modeled.Two control algorithms with different computational complexity are proposed and compared.Based on reduced-order state observer,a pole placement controller is proposed firstly,and then a model reference adaptive controller is designed.An experiment platform is established in Matlab xPC environment to validate the effect of the two controllers.The experiment results show that the model reference adaptive controller delivers a higher tracking accuracy after the adaptive transient procedure than the pole placement controller does.
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.