The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling t...The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling technique has been developed and proved to be efficient and successful in Daqing oilfield. This paper discusses the application of approximately-balanced drilling technique under the condition of multilayered pressure in Daqing oilfield, including the prediction of formation pressure, the pressure discharge technique for the drilling well and the control of the density of drilling fluid.展开更多
Film cooling holes are widely used in aero-engine turbine blades.These blades feature large numbers of holes with complex angles and require a high level of surface integrity.Electrochemical discharge drilling(ECDD)co...Film cooling holes are widely used in aero-engine turbine blades.These blades feature large numbers of holes with complex angles and require a high level of surface integrity.Electrochemical discharge drilling(ECDD)combines the high efficiency of electrical discharge drilling(EDD)with high quality of electrochemical drilling(ECD).However,due to the existence of a variety of energy for material removal,accurate and timely detection of breakthroughs is fraught with difficulties.An insufficient preset setting distance results in a tiny exit aperture,influencing the structure's shape.In addition,the electrode is prone to bending at a large overfeeding distance,causing secondary discharge damaging sidewall surface integrity.This paper compares and analyzes the characteristics of processing waveforms using EDD and ECDD.A novel breakthrough detection method is proposed based on the variance signal of average voltage(VSAV)to increase machining stability and achieve fabrication without a recast layer.This method extracts the fluctuation transformation by calculating the variance of the average.Following signal detection,the overfeeding distance is quantified.An experiment is used to validate the breakthrough detection with 100%accuracy in all tests.The optimum overfeeding distances for hole angles of 0°,30°,and 60° are obtained,and the stable removal of the recast layer is realized.Finally,the effectiveness of the method is verified on a typical workpiece with a double-wall structure and a nickel-based single crystal blade.展开更多
Porous structures are highly preferred for bone regeneration and high tissue in-growth.In present work,electrical discharge drilling(EDD),a thermal erosion process was used to produce through holes in Mg-alloys to fab...Porous structures are highly preferred for bone regeneration and high tissue in-growth.In present work,electrical discharge drilling(EDD),a thermal erosion process was used to produce through holes in Mg-alloys to fabricate perforated structure similar to open cell porous structure in extruded AZ31.Apatite formation and weight loss study was conducted for 7 days,14 days and 21 days after immersion tests in SBF solution.The perforated structure in AZ31 with 26 through micro-holes provides 72%increase in surface area but with marginally 4%higher weight loss as compare to non-perforated structure.Comparing perforated and non-perforated samples of Mg-alloy,it was well observed that perforated structure forms high volume of apatite as compared to non-perforated structure.Scanning electron microscopic(SEM)study revealed that in perforated structure,drilled holes retain their circularity after 21 days of immersion test and distinct corrosion phenomenon occur at localized sites.展开更多
Fast drilling electrical discharge machining(EDM)is widely used in the manufacture of film cooling holes of turbine blades.However,due to the various hole orientations and severe electrode wear,it is relatively intric...Fast drilling electrical discharge machining(EDM)is widely used in the manufacture of film cooling holes of turbine blades.However,due to the various hole orientations and severe electrode wear,it is relatively intricate to accurately and timely identify the critical moments such as breakout,hole completion in the drilling process,and adjust the machining strategy properly.Existing breakout detection and hole completion determination methods are not suitable for the high-efficiency and fully automatic production of film cooling holes,for they almost all depend on preset thresholds or training data and become less appropriate when machining condition changes.As the breakout and hole completion detection problems can be abstracted to an online stage identification problem,in this paper,a kurtosis-based stage identification(KBSI)method,which uses a novel normalized kurtosis to denote the recent changing trends of gap voltage signals,is developed for online stage identification.The identification accuracy and generalization ability of the KBSI method have been verified in various machining conditions.To improve the overall machining efficiency,the influence of servo control parameters on machining efficiency of each machining stage was analyzed experimentally,and a new stage-wise adaptive control strategy was then proposed to dynamically adjust the servo control parameters according to the online identification results.The performance of the new strategy is evaluated by drilling film cooling holes at different hole orientations.Experimental results show that with the new control strategy,machining efficiency and the machining quality can be significantly improved.展开更多
文摘The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling technique has been developed and proved to be efficient and successful in Daqing oilfield. This paper discusses the application of approximately-balanced drilling technique under the condition of multilayered pressure in Daqing oilfield, including the prediction of formation pressure, the pressure discharge technique for the drilling well and the control of the density of drilling fluid.
基金the financial support provided by the National Natural Science Foundation of China(91960204)the Innovative Research Group Project of the National Natural Science Foundation of China(51921003).
文摘Film cooling holes are widely used in aero-engine turbine blades.These blades feature large numbers of holes with complex angles and require a high level of surface integrity.Electrochemical discharge drilling(ECDD)combines the high efficiency of electrical discharge drilling(EDD)with high quality of electrochemical drilling(ECD).However,due to the existence of a variety of energy for material removal,accurate and timely detection of breakthroughs is fraught with difficulties.An insufficient preset setting distance results in a tiny exit aperture,influencing the structure's shape.In addition,the electrode is prone to bending at a large overfeeding distance,causing secondary discharge damaging sidewall surface integrity.This paper compares and analyzes the characteristics of processing waveforms using EDD and ECDD.A novel breakthrough detection method is proposed based on the variance signal of average voltage(VSAV)to increase machining stability and achieve fabrication without a recast layer.This method extracts the fluctuation transformation by calculating the variance of the average.Following signal detection,the overfeeding distance is quantified.An experiment is used to validate the breakthrough detection with 100%accuracy in all tests.The optimum overfeeding distances for hole angles of 0°,30°,and 60° are obtained,and the stable removal of the recast layer is realized.Finally,the effectiveness of the method is verified on a typical workpiece with a double-wall structure and a nickel-based single crystal blade.
文摘Porous structures are highly preferred for bone regeneration and high tissue in-growth.In present work,electrical discharge drilling(EDD),a thermal erosion process was used to produce through holes in Mg-alloys to fabricate perforated structure similar to open cell porous structure in extruded AZ31.Apatite formation and weight loss study was conducted for 7 days,14 days and 21 days after immersion tests in SBF solution.The perforated structure in AZ31 with 26 through micro-holes provides 72%increase in surface area but with marginally 4%higher weight loss as compare to non-perforated structure.Comparing perforated and non-perforated samples of Mg-alloy,it was well observed that perforated structure forms high volume of apatite as compared to non-perforated structure.Scanning electron microscopic(SEM)study revealed that in perforated structure,drilled holes retain their circularity after 21 days of immersion test and distinct corrosion phenomenon occur at localized sites.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52175426,52075333)the National Science and Technology Major Projects of China(Grant No.2018ZX04005001).
文摘Fast drilling electrical discharge machining(EDM)is widely used in the manufacture of film cooling holes of turbine blades.However,due to the various hole orientations and severe electrode wear,it is relatively intricate to accurately and timely identify the critical moments such as breakout,hole completion in the drilling process,and adjust the machining strategy properly.Existing breakout detection and hole completion determination methods are not suitable for the high-efficiency and fully automatic production of film cooling holes,for they almost all depend on preset thresholds or training data and become less appropriate when machining condition changes.As the breakout and hole completion detection problems can be abstracted to an online stage identification problem,in this paper,a kurtosis-based stage identification(KBSI)method,which uses a novel normalized kurtosis to denote the recent changing trends of gap voltage signals,is developed for online stage identification.The identification accuracy and generalization ability of the KBSI method have been verified in various machining conditions.To improve the overall machining efficiency,the influence of servo control parameters on machining efficiency of each machining stage was analyzed experimentally,and a new stage-wise adaptive control strategy was then proposed to dynamically adjust the servo control parameters according to the online identification results.The performance of the new strategy is evaluated by drilling film cooling holes at different hole orientations.Experimental results show that with the new control strategy,machining efficiency and the machining quality can be significantly improved.