Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational ...Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational analysis theory to screen out candidate drill bits with reference values.A new comprehensive performance evaluation model of drill bit was established by constructing the absolute ideal solution,changing the relative distance measurement method,and introducing entropy weight to work out the closeness between the candidate drill bits and ideal drill bits and select the reasonable drill bit.Through the construction of absolute ideal solution,improvement of relative distance measurement method and introduction of entropy weight,the inherent defects of TOPSIS decision analysis method,such as non-absolute order,reverse order and unreasonable weight setting,can be overcome.Simple in calculation and easy to understand,the new bit selection method has good adaptability to drill bit selection using dynamic change drill bit database.Field application has proved that the drill bits selected by the new drill bit selection method had significant increase in average rate of penetration,low wear rate,and good compatibility with the drilled formations in actual drilling.This new method of drill bit selection can be used as a technical means to select drill bits with high efficiency,long life and good economics in oilfields.展开更多
Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly...Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly.Then,the interaction between diamond drill bits and rock was analyzed based on numerical modeling.A novel drill bit with an inner conical crown for the mitigation of core discing was designed and verified by simulation experiments.The mitigation method was applied in the cavern B1 of CJPL-Ⅱand satisfactory results had been achieved.The percentage of core discing had been obviously decreased from 67.8%when drilling with a rectangular crown drill bit,to 26.5%when an inner conical crown drill bit had been adopted.This paper gives full insight into core discing characteristics and provides a new method for core discing mitigation;it will potentially contribute to stress measurement in deep rock engineering.展开更多
Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- e...Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research. Due to such reasons as power consumption and weight complications, it is hard to apply a conven- tional rotary drilling rig for glacial exploration. Use of small, relatively lightweight, portable engine-powered drilling systems in which the drill lifting from the borehole is carried by the winch. It is reasonable enough for near-surface shallow ice-drilling down to 50 m. Such systems can be used for near-surface ablation-stakes in- stallation, also temperature measurements at the bottom of active strata layer, revealing of anthropogenie pollu- tion, etc. The specified used in this research is an auger ice drill powered by a gasoline engine. At this stage, it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate. Sen- sors equipped on the rig have measured the main parameters of the drilling process, such as drill speed, WOB, drill rotation speed, torque and temperature. This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice-core drilling process.展开更多
基金Supported by China National Science and Technology Major Project(2016ZX05020-006)。
文摘Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational analysis theory to screen out candidate drill bits with reference values.A new comprehensive performance evaluation model of drill bit was established by constructing the absolute ideal solution,changing the relative distance measurement method,and introducing entropy weight to work out the closeness between the candidate drill bits and ideal drill bits and select the reasonable drill bit.Through the construction of absolute ideal solution,improvement of relative distance measurement method and introduction of entropy weight,the inherent defects of TOPSIS decision analysis method,such as non-absolute order,reverse order and unreasonable weight setting,can be overcome.Simple in calculation and easy to understand,the new bit selection method has good adaptability to drill bit selection using dynamic change drill bit database.Field application has proved that the drill bits selected by the new drill bit selection method had significant increase in average rate of penetration,low wear rate,and good compatibility with the drilled formations in actual drilling.This new method of drill bit selection can be used as a technical means to select drill bits with high efficiency,long life and good economics in oilfields.
基金Projects(U1765206,51979268,51621006)supported by the National Natural Science Foundation of China。
文摘Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly.Then,the interaction between diamond drill bits and rock was analyzed based on numerical modeling.A novel drill bit with an inner conical crown for the mitigation of core discing was designed and verified by simulation experiments.The mitigation method was applied in the cavern B1 of CJPL-Ⅱand satisfactory results had been achieved.The percentage of core discing had been obviously decreased from 67.8%when drilling with a rectangular crown drill bit,to 26.5%when an inner conical crown drill bit had been adopted.This paper gives full insight into core discing characteristics and provides a new method for core discing mitigation;it will potentially contribute to stress measurement in deep rock engineering.
基金Supported by projects of National Science Foundation of China(No.41327804)the Geological Survey of China(No.3R212W324424)
文摘Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research. Due to such reasons as power consumption and weight complications, it is hard to apply a conven- tional rotary drilling rig for glacial exploration. Use of small, relatively lightweight, portable engine-powered drilling systems in which the drill lifting from the borehole is carried by the winch. It is reasonable enough for near-surface shallow ice-drilling down to 50 m. Such systems can be used for near-surface ablation-stakes in- stallation, also temperature measurements at the bottom of active strata layer, revealing of anthropogenie pollu- tion, etc. The specified used in this research is an auger ice drill powered by a gasoline engine. At this stage, it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate. Sen- sors equipped on the rig have measured the main parameters of the drilling process, such as drill speed, WOB, drill rotation speed, torque and temperature. This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice-core drilling process.