In advanced otological surgeries, powered instruments form an indispensable part. The risk of deterioration to hearing in the operated ear is a commonly discussed issue, however, there remains a possibility of affecti...In advanced otological surgeries, powered instruments form an indispensable part. The risk of deterioration to hearing in the operated ear is a commonly discussed issue, however, there remains a possibility of affecting the hearing in the contralateral ear due to transcranial vibration. So in this study we aimed to assess the possibility of the non-operated ear being affected by the noise generated during ear surgeries and whether it is temporary or permanent in nature. Methodology: This study included 63 patients diagnosed with unilateral disease who underwent mastoid surgery. Preoperatively all the patients were subjected to Pure tone audiometry (PTA), Transient evoked otoacoustic emission (TEOAE) and Distortion product otoacoustic emission (DPOAE). Patients were operated using both cutting and diamond burrs of ranging from sizes 1 - 6 mm. Total drilling time was recorded. Results: Post-operative hearing evaluation was done at 1 week, 4 weeks and 12 weeks. The sound emitted by various burrs was recorded by Sound Level Meter. Out of the total 58 patients that followed up, 46 showed change in at least one of the hearing parameters. Patients showing changes had a higher drilling time as compared to those with no changes. Of these, the changes associated with the total drilling time and with cutting burr time were found to be significant. The hearing changes seen on PTA, TEOAE and DPOAE were transient in nature with only one patient having a persistent decreased high frequency threshold at the end of 12 weeks. It was also found that cutting burrs produce more sound as compared to diamond burrs and a larger size burr of a type produces more sound than a smaller one of its type. Conclusion: The drilling of mastoid bone during ear surgeries can transiently impair the hearing in the contralateral ear which is of great significance in patients with only one hearing ear.展开更多
Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for wa...Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.展开更多
Traditional surface exposure methods,such as trenching and exploratory shaft sinking,have their own limitations and do harm to the environment.Thus,shallow drilling was applied in geological mapping to expose shallow ...Traditional surface exposure methods,such as trenching and exploratory shaft sinking,have their own limitations and do harm to the environment.Thus,shallow drilling was applied in geological mapping to expose shallow orebody and to determine the thickness of top soil layer,and then to illustrate bedrock lithology and geological boundary.It can also help to study geological structures and to reveal the orebody shape,and further to combine with rock core sampling and chemical analysis to develop the systematic method of drilling instead of trenching technology.展开更多
Implementing continental scientific drilling in China is of great scientific significance, and is an inspiring major scientific project for promoting the rapid development of the economy and society of China. It is a ...Implementing continental scientific drilling in China is of great scientific significance, and is an inspiring major scientific project for promoting the rapid development of the economy and society of China. It is a prerequisite for earth science research to obtain major progress, and can bring along the development of other branches of science, engineering and technology, and to form high-tech industries. Moreover, it is also an important basis for personnel training, and one of the important indicators of S&T actual strength of a country. From 1970, 14 countries have implemented continental scientific drilling. Practice shows that there is a difference between continental展开更多
Both evolution of the Asian monsoon system and the Cenozoic global cooling are thought to be closely linked to the Himalayan—Tibetan orogen. The South China Sea (SCS) with its high sedimentation rates of carbonate\|r...Both evolution of the Asian monsoon system and the Cenozoic global cooling are thought to be closely linked to the Himalayan—Tibetan orogen. The South China Sea (SCS) with its high sedimentation rates of carbonate\|rich hemipelagic sediments offers a unique opportunity to study the variability of the East Asian monsoon, the erosion and weathering of tectonic orogens as well as its possible impact on global and regional climate.Leg 184, the first deep\|sea drilling leg to the seas off China, cored 17 holes at 6 sites in the northern and southern parts of the SCS and recovered 5463m of sediment. The drilling of hemipelagic sediments was exceptionally successful, with core recovery averaging 83%~101%. The 32Ma sequence of deep\|sea sediments recovered during Leg 184 covers almost the entire environmental history of the SCS since its opening. The abnormally high sediment accumulation rates in the Oligocene section are correlative with the incipient sea floor spreading. The bathyal nature of the Oligocenefauna implies that rifting occurred in the Eocene or earlier. Faunal changesfrom the early to late Oligocene are indicative of basin deepening, a trend thatis even more evident in the Miocene section. Sediment deformation, abruptlithologic changes, and a hiatus occur near the Oligocene/Miocene boundary,representing one of the most significant events in the tectonic andenvironmental history of the SCS.展开更多
Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limi...Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.展开更多
SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the r...SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the reservoir.By studying the attitude of the downhole probe tube and the production well trajectory,an algorithm is proposed for eliminating ferromagnetic interference while drilling injection wells.A high accuracy filter circuit has been designed to correct the detected magnetic signals,which are ultra-weak,frequency-instable,and narrow-band.The directional drilling magnetic guidance system(DD-MGS) has been developed by integrating these advanced techniques.It contains a sub-system for the ranging calculation software,a magnetic source,a downhole probe tube and a sub-system for collecting & processing the detected signals.The DD-MGS has succeeded in oilfield applications.It can guide the directional drilling trajectory not only in the horizontal section but also in the build section of horizontal injection wells.This new technology has broad potential applications.展开更多
Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of th...Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of the drill rod and the properties of the rock being drilled. This paper analyzes transverse, longitudinal, and torsional vibrations in the drill rod by using vibration theory. Characteristic indexes for three kinds of vibration are determined. Using the finite element analysis software ABAQUS, a model for drill rod vibration during the drilling of roof bolt holes was established based on the geological and mining conditions in the Guyuan Coal Mine, northern China. Results from the model determined that the transverse and the longitudinal vibration decrease as the rock hardness decreases. In descending order, sandstone,sandy mudstone, mudstone, and weak interbeds cause progressively less vibration when being drilled.The ranking for strata that cause decreasing torsional vibration is slightly different, being, in descending order, mudstone, sandstone, sandy mudstone, and weak interbeds. These results provide a theoretical basis for predicting dangerous roof conditions and the presence of weak interbeds to allow for adjusting bolt support schemes.展开更多
Dry drilling only with the assistance of an auger is a reliable and realistic approach to remove abundant soils from the side of a bit in the harsh, dry conditions on the Moon. Based on an elementary analysis, using J...Dry drilling only with the assistance of an auger is a reliable and realistic approach to remove abundant soils from the side of a bit in the harsh, dry conditions on the Moon. Based on an elementary analysis, using Janssen's model to reflect the coupling effect among the different components of the stress, the present paper models the conveying dynamics along the helical groove and the sampling mechanism in the centering hole of the stem for an auger drilling into lunar soil simulant. Combining the two parts as well as a simple cutting model for the bit, a whole drilling model is established to investigate the complicated relation among the conveying ability of the auger, the coring rate, and drilling parameters such as the penetration and rotation speeds. The relation is revealed by the complicated transition between different sub-models with the help of the physical transition conditions. A series of experiments with constant penetration and rotation speeds are conducted to verify the model. Three aspects of characteristics of the drilling dynamics are manifested,(i) the loads on the bit are almost independent of penetration;(ii) three obvious drilling stages with respect to cut per revolution are grouped;(iii) a linear relationship is found between the coring rate and the revolution per penetration.展开更多
The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of d...The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.展开更多
Mud losses are one of the most severe problems encountered in drilling. This is commonly known as lost circulation. It can occur in naturally fractured formations and also can be induced in formations through drilling...Mud losses are one of the most severe problems encountered in drilling. This is commonly known as lost circulation. It can occur in naturally fractured formations and also can be induced in formations through drilling. Mud losses while drilling leading to cost overruns and HSE concerns, primary cement job failure due to not getting the cement up to the desired height resulting in subsequent sustained casing pressure and corrosion, not able to perform work over activity on certain wells due to losses. The objective of this paper is to explain extreme lost circulation problem and introduce cement plug formulation to cure or mitigate this problem. In addition, the cement plug has certain compressive strength that this is proper for use to control lost circulation in field. And finally, the application of a cement plug is described in one well of the Gas Field (National Iranian Oil Company).展开更多
In view of the shortcomings of current intelligent drilling technology in drilling condition representation, sample collection, data processing and feature extraction, an intelligent identification method of safety ri...In view of the shortcomings of current intelligent drilling technology in drilling condition representation, sample collection, data processing and feature extraction, an intelligent identification method of safety risk while drilling was established. The correlation analysis method was used to determine correlation parameters indicating gas drilling safety risk. By collecting monitoring data in the safety risk period of more than 20 wells, a sample database of a variety of safety risks in gas drilling was established, and the number of samples was expanded by using the method of few-shot learning. According to the forms of gas drilling monitoring data samples, a two-layer convolution neural network architecture was designed, and multiple convolution cores of different sizes and weights were set to realize the vertical and horizontal convolution computations of samples to extract and learn the variation law and correlation characteristics of multiple monitoring parameters. Finally, based on the training results of neural network, samples of different kinds of safety risks were selected to enhance the recognition accuracy. Compared with the traditional BP(error back propagation) full-connected neural network architecture, this method can more deeply and effectively identify safety risk characteristics in gas drilling, and thus identify and predict risks in advance, which is conducive to avoid and quickly solve safety risks while drilling. Field application has proved that this method has an identification accuracy of various safety risks while drilling in the process of gas drilling of about 90% and is practical.展开更多
The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling t...The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling technique has been developed and proved to be efficient and successful in Daqing oilfield. This paper discusses the application of approximately-balanced drilling technique under the condition of multilayered pressure in Daqing oilfield, including the prediction of formation pressure, the pressure discharge technique for the drilling well and the control of the density of drilling fluid.展开更多
Drilling techniques commonly used in Africa are rather well suited for areas where geologic formations are hard and groundwater is not located at higher depths. Thus, for a large number of people living in rural areas...Drilling techniques commonly used in Africa are rather well suited for areas where geologic formations are hard and groundwater is not located at higher depths. Thus, for a large number of people living in rural areas, access to improved drinking water sources is often limited, due to the high cost of drilled boreholes that is closely linked to geographical, geological and hydrogeological factors. The analysis of various contexts has revealed that, in order to improve access to safe drinking water for underserved communities and populations, it is possible to consider less costly alternative solutions, compared to current options for water supply which are still expensive. In this paper, a simplified drilling technology at a very low cost has been demonstrated: “the manual or hand drilling”, which is a practical solution for less than 40-m deep water points in alluvial terrains or low resistance rock formations. The feasibility study of manual drilling in Senegal has revealed that, even if it is not practical in all geological formations of the country, manual drilling remains an alternative solution for reducing costs and improving accessibility to drinking water in several areas in Senegal, particularly in the Senegal River Valley, along the northern coast, in Fatick and Casamance coastal zones. This study was used to set up map of areas suitable for manual drilling boreholes;it aims to strengthen the local private sector capacity to meet growing drinking water needs in rural areas.展开更多
The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the...The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the last decades. Types of imperfections either geotechnical or structural are documented in literature and well explained. Nevertheless, the influence of these imperfections in pile load calculations is still ambiguous. The work presented herein is devoted to study soil disturbance during construction of piles using continuous flight auger, CFA. The study of soil disturbance due to drilling needs some evidence. The source of this evidence is field observations collected from four different construction sites, which are documented in this paper. The study concluded that the disturbed zone of soil by CFA has a conical shape and extending laterally to a distance equivalent to ten times of the pile diameter around the auger at the cutting bits and has an inclined surface of4:1 (vertical : horizontal). Furthermore excess pore water pressure was induced in soil in the vicinity of pile drilling. Due to this excess pore water pressure, 3.5% to 6.5% of piles constructed by CFA showed percolation of water from the top of the piles through fresh concrete. Also, subsidence of fresh concrete in pile hole was recorded in few of the constructed piles. Pile loading tests showed that the percolation of water and/or subsidence of fresh concrete have not appreciable influence on the load-displacement characteristics of the piles. Moreover, percolation of water at pile heads.展开更多
Based on analyzing method of large diameter hard rock drilling at home and abroad, the authors proposed a set of drilling of large diameter hard rock annular coring in low energy consumption, low cost and high efficie...Based on analyzing method of large diameter hard rock drilling at home and abroad, the authors proposed a set of drilling of large diameter hard rock annular coring in low energy consumption, low cost and high efficiency. The prototype of drilling tools was designed and was made. The experimental result of the prototype indicates that this plan and technology are feasible and reach the anticipated object of design. A set of drilling tools has been offered for the constructs of large diameter hard rock coring.展开更多
This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce th...This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites.展开更多
文摘In advanced otological surgeries, powered instruments form an indispensable part. The risk of deterioration to hearing in the operated ear is a commonly discussed issue, however, there remains a possibility of affecting the hearing in the contralateral ear due to transcranial vibration. So in this study we aimed to assess the possibility of the non-operated ear being affected by the noise generated during ear surgeries and whether it is temporary or permanent in nature. Methodology: This study included 63 patients diagnosed with unilateral disease who underwent mastoid surgery. Preoperatively all the patients were subjected to Pure tone audiometry (PTA), Transient evoked otoacoustic emission (TEOAE) and Distortion product otoacoustic emission (DPOAE). Patients were operated using both cutting and diamond burrs of ranging from sizes 1 - 6 mm. Total drilling time was recorded. Results: Post-operative hearing evaluation was done at 1 week, 4 weeks and 12 weeks. The sound emitted by various burrs was recorded by Sound Level Meter. Out of the total 58 patients that followed up, 46 showed change in at least one of the hearing parameters. Patients showing changes had a higher drilling time as compared to those with no changes. Of these, the changes associated with the total drilling time and with cutting burr time were found to be significant. The hearing changes seen on PTA, TEOAE and DPOAE were transient in nature with only one patient having a persistent decreased high frequency threshold at the end of 12 weeks. It was also found that cutting burrs produce more sound as compared to diamond burrs and a larger size burr of a type produces more sound than a smaller one of its type. Conclusion: The drilling of mastoid bone during ear surgeries can transiently impair the hearing in the contralateral ear which is of great significance in patients with only one hearing ear.
文摘Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.
基金financially supported by the China Geological Survey project (grant no.12120114008101,12120113097200 and 12120113090900)
文摘Traditional surface exposure methods,such as trenching and exploratory shaft sinking,have their own limitations and do harm to the environment.Thus,shallow drilling was applied in geological mapping to expose shallow orebody and to determine the thickness of top soil layer,and then to illustrate bedrock lithology and geological boundary.It can also help to study geological structures and to reveal the orebody shape,and further to combine with rock core sampling and chemical analysis to develop the systematic method of drilling instead of trenching technology.
文摘Implementing continental scientific drilling in China is of great scientific significance, and is an inspiring major scientific project for promoting the rapid development of the economy and society of China. It is a prerequisite for earth science research to obtain major progress, and can bring along the development of other branches of science, engineering and technology, and to form high-tech industries. Moreover, it is also an important basis for personnel training, and one of the important indicators of S&T actual strength of a country. From 1970, 14 countries have implemented continental scientific drilling. Practice shows that there is a difference between continental
文摘Both evolution of the Asian monsoon system and the Cenozoic global cooling are thought to be closely linked to the Himalayan—Tibetan orogen. The South China Sea (SCS) with its high sedimentation rates of carbonate\|rich hemipelagic sediments offers a unique opportunity to study the variability of the East Asian monsoon, the erosion and weathering of tectonic orogens as well as its possible impact on global and regional climate.Leg 184, the first deep\|sea drilling leg to the seas off China, cored 17 holes at 6 sites in the northern and southern parts of the SCS and recovered 5463m of sediment. The drilling of hemipelagic sediments was exceptionally successful, with core recovery averaging 83%~101%. The 32Ma sequence of deep\|sea sediments recovered during Leg 184 covers almost the entire environmental history of the SCS since its opening. The abnormally high sediment accumulation rates in the Oligocene section are correlative with the incipient sea floor spreading. The bathyal nature of the Oligocenefauna implies that rifting occurred in the Eocene or earlier. Faunal changesfrom the early to late Oligocene are indicative of basin deepening, a trend thatis even more evident in the Miocene section. Sediment deformation, abruptlithologic changes, and a hiatus occur near the Oligocene/Miocene boundary,representing one of the most significant events in the tectonic andenvironmental history of the SCS.
基金support from the project of CNOOC China Limited-Shenzhen (Grant No. Z2007SLSZ-034)the foundation project of the State Key Laboratory of Petroleum Resource and Prospecting (Grant No. PRPDX2008-08) is gratefully acknowledged
文摘Extended reach wells (ERWs), especially horizontal extended reach well with a high HD (horizontal displacement) to TVD (true vertical depth) ratio, represent a frontier technology and challenge the drilling limitations. Oil and gas reservoir in beaches or lakes and offshore can be effectively exploited by using extended reach drilling (ERD) technology. This paper focuses on the difficult technological problems encountered during exploiting the Liuhua 11-1 oil field in the South China Sea, China. Emphasis is on investigating the key subjects including prediction and control of open hole limit extension in offshore ERD, prediction of casing wear and its prevention and torque reduction, φ244.5mm casing running with floating collars to control drag force, and steerable drilling modes. The basic concept of limit extension in ERD is presented and the prediction method for open hole limit extension is given in this paper. A set of advanced drilling mechanics and control technology has been established and its practical results are verified by field cases. All those efforts may be significant for further investigating and practicing ERD limit theory and control technology in the future.
基金the financial support from the Natural Science Foundation of China (NSFC, 51221003, U1262201)supported by other projects (Grant numbers: 2011ZX05009, 2013AA064803)
文摘SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the reservoir.By studying the attitude of the downhole probe tube and the production well trajectory,an algorithm is proposed for eliminating ferromagnetic interference while drilling injection wells.A high accuracy filter circuit has been designed to correct the detected magnetic signals,which are ultra-weak,frequency-instable,and narrow-band.The directional drilling magnetic guidance system(DD-MGS) has been developed by integrating these advanced techniques.It contains a sub-system for the ranging calculation software,a magnetic source,a downhole probe tube and a sub-system for collecting & processing the detected signals.The DD-MGS has succeeded in oilfield applications.It can guide the directional drilling trajectory not only in the horizontal section but also in the build section of horizontal injection wells.This new technology has broad potential applications.
基金the National Natural Science Foundation of China (Nos.51104055,51274087,51604094 and 51674098)
文摘Structural deterioration in the roof in an underground mine can easily cause roof fall, and deterioration is difficult to detect. When drilling holes for roof bolts, there is a relationship between the vibration of the drill rod and the properties of the rock being drilled. This paper analyzes transverse, longitudinal, and torsional vibrations in the drill rod by using vibration theory. Characteristic indexes for three kinds of vibration are determined. Using the finite element analysis software ABAQUS, a model for drill rod vibration during the drilling of roof bolt holes was established based on the geological and mining conditions in the Guyuan Coal Mine, northern China. Results from the model determined that the transverse and the longitudinal vibration decrease as the rock hardness decreases. In descending order, sandstone,sandy mudstone, mudstone, and weak interbeds cause progressively less vibration when being drilled.The ranking for strata that cause decreasing torsional vibration is slightly different, being, in descending order, mudstone, sandstone, sandy mudstone, and weak interbeds. These results provide a theoretical basis for predicting dangerous roof conditions and the presence of weak interbeds to allow for adjusting bolt support schemes.
基金Project supported by the National Natural Science Foundation of China(Nos.11572017 and11772021)
文摘Dry drilling only with the assistance of an auger is a reliable and realistic approach to remove abundant soils from the side of a bit in the harsh, dry conditions on the Moon. Based on an elementary analysis, using Janssen's model to reflect the coupling effect among the different components of the stress, the present paper models the conveying dynamics along the helical groove and the sampling mechanism in the centering hole of the stem for an auger drilling into lunar soil simulant. Combining the two parts as well as a simple cutting model for the bit, a whole drilling model is established to investigate the complicated relation among the conveying ability of the auger, the coring rate, and drilling parameters such as the penetration and rotation speeds. The relation is revealed by the complicated transition between different sub-models with the help of the physical transition conditions. A series of experiments with constant penetration and rotation speeds are conducted to verify the model. Three aspects of characteristics of the drilling dynamics are manifested,(i) the loads on the bit are almost independent of penetration;(ii) three obvious drilling stages with respect to cut per revolution are grouped;(iii) a linear relationship is found between the coring rate and the revolution per penetration.
基金Supported by the "863" Program(2003AA131100-02-06)the National Natural Science Foundation of China(50274061)
文摘The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.
文摘Mud losses are one of the most severe problems encountered in drilling. This is commonly known as lost circulation. It can occur in naturally fractured formations and also can be induced in formations through drilling. Mud losses while drilling leading to cost overruns and HSE concerns, primary cement job failure due to not getting the cement up to the desired height resulting in subsequent sustained casing pressure and corrosion, not able to perform work over activity on certain wells due to losses. The objective of this paper is to explain extreme lost circulation problem and introduce cement plug formulation to cure or mitigate this problem. In addition, the cement plug has certain compressive strength that this is proper for use to control lost circulation in field. And finally, the application of a cement plug is described in one well of the Gas Field (National Iranian Oil Company).
基金Supported by National Key R&D Plan (2019YFA0708303)Key R&D Projects of Sichuan Science and Technology Plan (2021YFG0318)Key Projects of NSFC (61731016)。
文摘In view of the shortcomings of current intelligent drilling technology in drilling condition representation, sample collection, data processing and feature extraction, an intelligent identification method of safety risk while drilling was established. The correlation analysis method was used to determine correlation parameters indicating gas drilling safety risk. By collecting monitoring data in the safety risk period of more than 20 wells, a sample database of a variety of safety risks in gas drilling was established, and the number of samples was expanded by using the method of few-shot learning. According to the forms of gas drilling monitoring data samples, a two-layer convolution neural network architecture was designed, and multiple convolution cores of different sizes and weights were set to realize the vertical and horizontal convolution computations of samples to extract and learn the variation law and correlation characteristics of multiple monitoring parameters. Finally, based on the training results of neural network, samples of different kinds of safety risks were selected to enhance the recognition accuracy. Compared with the traditional BP(error back propagation) full-connected neural network architecture, this method can more deeply and effectively identify safety risk characteristics in gas drilling, and thus identify and predict risks in advance, which is conducive to avoid and quickly solve safety risks while drilling. Field application has proved that this method has an identification accuracy of various safety risks while drilling in the process of gas drilling of about 90% and is practical.
文摘The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling technique has been developed and proved to be efficient and successful in Daqing oilfield. This paper discusses the application of approximately-balanced drilling technique under the condition of multilayered pressure in Daqing oilfield, including the prediction of formation pressure, the pressure discharge technique for the drilling well and the control of the density of drilling fluid.
文摘Drilling techniques commonly used in Africa are rather well suited for areas where geologic formations are hard and groundwater is not located at higher depths. Thus, for a large number of people living in rural areas, access to improved drinking water sources is often limited, due to the high cost of drilled boreholes that is closely linked to geographical, geological and hydrogeological factors. The analysis of various contexts has revealed that, in order to improve access to safe drinking water for underserved communities and populations, it is possible to consider less costly alternative solutions, compared to current options for water supply which are still expensive. In this paper, a simplified drilling technology at a very low cost has been demonstrated: “the manual or hand drilling”, which is a practical solution for less than 40-m deep water points in alluvial terrains or low resistance rock formations. The feasibility study of manual drilling in Senegal has revealed that, even if it is not practical in all geological formations of the country, manual drilling remains an alternative solution for reducing costs and improving accessibility to drinking water in several areas in Senegal, particularly in the Senegal River Valley, along the northern coast, in Fatick and Casamance coastal zones. This study was used to set up map of areas suitable for manual drilling boreholes;it aims to strengthen the local private sector capacity to meet growing drinking water needs in rural areas.
文摘The pile working load depends on the imperfections which may be taken place in pile-soil system, during pile construction, among many other factors. This subject attracted the researcher's attention world wide in the last decades. Types of imperfections either geotechnical or structural are documented in literature and well explained. Nevertheless, the influence of these imperfections in pile load calculations is still ambiguous. The work presented herein is devoted to study soil disturbance during construction of piles using continuous flight auger, CFA. The study of soil disturbance due to drilling needs some evidence. The source of this evidence is field observations collected from four different construction sites, which are documented in this paper. The study concluded that the disturbed zone of soil by CFA has a conical shape and extending laterally to a distance equivalent to ten times of the pile diameter around the auger at the cutting bits and has an inclined surface of4:1 (vertical : horizontal). Furthermore excess pore water pressure was induced in soil in the vicinity of pile drilling. Due to this excess pore water pressure, 3.5% to 6.5% of piles constructed by CFA showed percolation of water from the top of the piles through fresh concrete. Also, subsidence of fresh concrete in pile hole was recorded in few of the constructed piles. Pile loading tests showed that the percolation of water and/or subsidence of fresh concrete have not appreciable influence on the load-displacement characteristics of the piles. Moreover, percolation of water at pile heads.
文摘Based on analyzing method of large diameter hard rock drilling at home and abroad, the authors proposed a set of drilling of large diameter hard rock annular coring in low energy consumption, low cost and high efficiency. The prototype of drilling tools was designed and was made. The experimental result of the prototype indicates that this plan and technology are feasible and reach the anticipated object of design. A set of drilling tools has been offered for the constructs of large diameter hard rock coring.
文摘This paper researches ultrasonic vibration drilling of carbon fiber reinforced polymers composites that are hard, brittle, and have low shear strength between layers. An experiment plan has been developed to reduce the axial force. Experimental studies have been done on the influence of process parameters, tool structures on the drilling axial force. The drilling mechanism is specially investigated. Thus an effective method is presented to reduce the drilling axial force. The authors suppose that ultrasonic vibration drilling is feasible for carbon fiber reinforced polymers composites.