With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio...With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.展开更多
The functions of lubricants in diamond drilling were discussedin this paper. The influences of lubricant on drilling efficiency and bit′s life were compared and analyzed with simulated drilling test and lubrication t...The functions of lubricants in diamond drilling were discussedin this paper. The influences of lubricant on drilling efficiency and bit′s life were compared and analyzed with simulated drilling test and lubrication test apparatus. Lubricating mechanisms were also discussed.展开更多
Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-pluggi...Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.展开更多
Aiming at the problems of microfracture development in hard brittle shale gas layer in Fuling block, Chongqing, such as collapse of borehole wall and the existence of permeability loss of microfracture during drilling...Aiming at the problems of microfracture development in hard brittle shale gas layer in Fuling block, Chongqing, such as collapse of borehole wall and the existence of permeability loss of microfracture during drilling, and serious pollution of drilling environment with oil-based drilling fluid, a water-based drilling fluid system for anti-collapse and anti-leakage was studied. A water-based drilling fluid system with anti-collapse and anti-leakage was formed by introducing functional treatment agents, such as polypolysaccharide MEG, polymer emulsion film forming wall cementing agent LFGB, polyamine inhibitor LCFA and deformable particle plugging agent BXLZ, into the conventional water-based drilling fluid. After rolling at 130°C for 16 h, the system has good rheological properties, low filtration loss, good inhibition, lubrication and plugging properties. It has good plugging properties for 0.12 mm, 0.24 mm, 0.38 mm micro-cracks and 400 mD and 800 mD sand plates. The system was successfully tested on site in August 2019 in Fuling Reef Block, showing good rheological properties, solid wall plugging, and strong ability to seal and inhibit fracture expansion. There was no block falling in the drilling process, and the tripping, casing running and well cementing operations were all smooth, which provided a new technical idea and scheme for environmental protection and green drilling in Fuling shale gas exploitation.展开更多
With the exploration and development of deep and ultra-deep oil and gas,high torque and high friction during the drilling of deep and ultra-deep wells become one of the key issues affecting drilling safety and drillin...With the exploration and development of deep and ultra-deep oil and gas,high torque and high friction during the drilling of deep and ultra-deep wells become one of the key issues affecting drilling safety and drilling speed.Meanwhile,the high temperature and high salt problem in deep formations is prominent,which poses a major challenge to the lubricity of drilling fluids under high temperature and high salt.This paper reports an organic borate ester SOP as an environmentally friendly drilling fluid lubricant.The performance evaluation results show that when 1%lubricant SOP is added to the fresh water-based mud,the lubrication coefficient decreases from 0.631 to 0.046,and the reduction rate of lubrication coefficient is 92.7%.Under the conditions of 210℃ and 30%NaCl,the reduction rate of lubricating coefficient of the base slurry with 1%SOP was still remain 81.5%.After adding 1%SOP,the wear volume decreased by 94.11%compared with the base slurry.The contact resistance experiment during the friction process shows that SOP can form a thick adsorption film on the friction surface under high temperature and high salt conditions,thus effectively reducing the friction resistance.Molecular dynamics simulation shows that lubricant SOP can be physically adsorbed on the surface of drilling tool and borehole wall through hydrogen bond and van der Waals force.XPS analysis further shows that SOP adsorbs on the friction surface and reacts with metal atoms on the friction surface to form a chemically reactive film.Therefore,under high temperature and high salt conditions,the synergistic effect of physical adsorption film and chemical reaction film effectively reduces the frictional resistance and wear of the friction surface.In addition,SOP is non-toxic and easy to degrade.Therefore,SOP is a highly effective and environmentally friendly lubricant in high temperature and high salt drilling fluid.展开更多
文摘With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.
文摘The functions of lubricants in diamond drilling were discussedin this paper. The influences of lubricant on drilling efficiency and bit′s life were compared and analyzed with simulated drilling test and lubrication test apparatus. Lubricating mechanisms were also discussed.
基金Supported by the National Natural Science Foundation of China(52288101).
文摘Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance.
文摘Aiming at the problems of microfracture development in hard brittle shale gas layer in Fuling block, Chongqing, such as collapse of borehole wall and the existence of permeability loss of microfracture during drilling, and serious pollution of drilling environment with oil-based drilling fluid, a water-based drilling fluid system for anti-collapse and anti-leakage was studied. A water-based drilling fluid system with anti-collapse and anti-leakage was formed by introducing functional treatment agents, such as polypolysaccharide MEG, polymer emulsion film forming wall cementing agent LFGB, polyamine inhibitor LCFA and deformable particle plugging agent BXLZ, into the conventional water-based drilling fluid. After rolling at 130°C for 16 h, the system has good rheological properties, low filtration loss, good inhibition, lubrication and plugging properties. It has good plugging properties for 0.12 mm, 0.24 mm, 0.38 mm micro-cracks and 400 mD and 800 mD sand plates. The system was successfully tested on site in August 2019 in Fuling Reef Block, showing good rheological properties, solid wall plugging, and strong ability to seal and inhibit fracture expansion. There was no block falling in the drilling process, and the tripping, casing running and well cementing operations were all smooth, which provided a new technical idea and scheme for environmental protection and green drilling in Fuling shale gas exploitation.
基金financially supported by National Natural Science Foundation of China(No.52074330)National Natural Science Foundation of China Major Projects(No.51991361).
文摘With the exploration and development of deep and ultra-deep oil and gas,high torque and high friction during the drilling of deep and ultra-deep wells become one of the key issues affecting drilling safety and drilling speed.Meanwhile,the high temperature and high salt problem in deep formations is prominent,which poses a major challenge to the lubricity of drilling fluids under high temperature and high salt.This paper reports an organic borate ester SOP as an environmentally friendly drilling fluid lubricant.The performance evaluation results show that when 1%lubricant SOP is added to the fresh water-based mud,the lubrication coefficient decreases from 0.631 to 0.046,and the reduction rate of lubrication coefficient is 92.7%.Under the conditions of 210℃ and 30%NaCl,the reduction rate of lubricating coefficient of the base slurry with 1%SOP was still remain 81.5%.After adding 1%SOP,the wear volume decreased by 94.11%compared with the base slurry.The contact resistance experiment during the friction process shows that SOP can form a thick adsorption film on the friction surface under high temperature and high salt conditions,thus effectively reducing the friction resistance.Molecular dynamics simulation shows that lubricant SOP can be physically adsorbed on the surface of drilling tool and borehole wall through hydrogen bond and van der Waals force.XPS analysis further shows that SOP adsorbs on the friction surface and reacts with metal atoms on the friction surface to form a chemically reactive film.Therefore,under high temperature and high salt conditions,the synergistic effect of physical adsorption film and chemical reaction film effectively reduces the frictional resistance and wear of the friction surface.In addition,SOP is non-toxic and easy to degrade.Therefore,SOP is a highly effective and environmentally friendly lubricant in high temperature and high salt drilling fluid.