The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simpl...The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer as- sumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The results of numerical simulations demonstrate the capability of the analytical model in predicting boundary layer parameters such as the boundary layer growth, the shear rate, the boundary layer thickness, and the swirl intensity decay rate for different cone angles. The proposed method introduces a simple and robust procedure to investigate the boundary layer parameters inside the converging geometries.展开更多
A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in whic...A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in which VNT adjustment is carried out through pre-calibrated VNT handling rod position,combined with a closed-loop target boost pressure feedback using proportional-integral-derivative(PID) algorithm.Experimental results showed that the VNT control system presented in this thesis can lead to optimized performance of VNT,increase engine volumetric efficiency over a wide speed range,improve engine dynamic characteristics and upgrade economic performance.展开更多
In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic ...In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic flow and the source of disturbance generated by this disturbance propagates downstream. In order to avoid the disturbance, the test can only be carried out in the rhombus area. However, for the supersonic nozzle, the rhombus region is small, limiting the size and attitude angle of the test model. An integrated supersonic nozzle is a nozzle and a test section as a whole, which is designed to weaken or eliminate the disturbance. The inviscid contour of the supersonic nozzle is based on the method of characteristics. A new curve is formed by the smooth connection between the inviscid contour and test section, and the boundary layer is corrected for the overall curve. Integrated supersonic nozzles with Mach number 1.5 and 2 are designed, which are based on this method. The flow field is validated by numerical and experimental results. The results of the study highlight the importance of the connection about the nozzle outlet and test section. They clearly show that the wave system does not exist at the exit of the supersonic nozzle, and the flow field is uniform throughout the test section.展开更多
The optimization of 2D expansion lines and key parameters of three-dimensional configurations was carried out under simulated conditions of Mach 6.5 and a flight altitude of 25 km for an integrated configuration of th...The optimization of 2D expansion lines and key parameters of three-dimensional configurations was carried out under simulated conditions of Mach 6.5 and a flight altitude of 25 km for an integrated configuration of the afterbody/nozzle of a hypersonic vehicle.First,the cubic B-spline method was applied to parameterize the expansion lines of the upper expansion ramp.The optimization procedure was established based on computational fluid dynamics and the sequential quadratic programming method.The local mesh reconstruction technique was applied to improve computational efficiency.A three-dimensional integrated configuration afterbody/nozzle was designed based on the two-dimensional optimized expansion lines.The influence rules incorporated certain key design parameters affecting the lift and thrust performance of the configuration,such as the ratio of the lengths of the lower expansion ramp to the afterbody (l/L),the dip angle of the lower expansion ramp ω,and the ratio of exit height to the length of afterbody (H/L).Under these conditions,we found that the integrated configuration has optimal performance when l/L=1/6,H/L=0.35 and =10°.We also showed that the presence of a side-board promotes lift and thrust performance,and effectively prevents the leakage of high pressure gas.展开更多
文摘The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer as- sumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The results of numerical simulations demonstrate the capability of the analytical model in predicting boundary layer parameters such as the boundary layer growth, the shear rate, the boundary layer thickness, and the swirl intensity decay rate for different cone angles. The proposed method introduces a simple and robust procedure to investigate the boundary layer parameters inside the converging geometries.
基金Sponsored by the Ministerial Advanced Research Foundation (C2002AA002)
文摘A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in which VNT adjustment is carried out through pre-calibrated VNT handling rod position,combined with a closed-loop target boost pressure feedback using proportional-integral-derivative(PID) algorithm.Experimental results showed that the VNT control system presented in this thesis can lead to optimized performance of VNT,increase engine volumetric efficiency over a wide speed range,improve engine dynamic characteristics and upgrade economic performance.
基金supported by Supersonic Laboratory of CAAANational Nature Science Foundation of China (Nos.11672283, 11872349)
文摘In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic flow and the source of disturbance generated by this disturbance propagates downstream. In order to avoid the disturbance, the test can only be carried out in the rhombus area. However, for the supersonic nozzle, the rhombus region is small, limiting the size and attitude angle of the test model. An integrated supersonic nozzle is a nozzle and a test section as a whole, which is designed to weaken or eliminate the disturbance. The inviscid contour of the supersonic nozzle is based on the method of characteristics. A new curve is formed by the smooth connection between the inviscid contour and test section, and the boundary layer is corrected for the overall curve. Integrated supersonic nozzles with Mach number 1.5 and 2 are designed, which are based on this method. The flow field is validated by numerical and experimental results. The results of the study highlight the importance of the connection about the nozzle outlet and test section. They clearly show that the wave system does not exist at the exit of the supersonic nozzle, and the flow field is uniform throughout the test section.
基金supported by the National Natural Science Foundation of China (90916013)
文摘The optimization of 2D expansion lines and key parameters of three-dimensional configurations was carried out under simulated conditions of Mach 6.5 and a flight altitude of 25 km for an integrated configuration of the afterbody/nozzle of a hypersonic vehicle.First,the cubic B-spline method was applied to parameterize the expansion lines of the upper expansion ramp.The optimization procedure was established based on computational fluid dynamics and the sequential quadratic programming method.The local mesh reconstruction technique was applied to improve computational efficiency.A three-dimensional integrated configuration afterbody/nozzle was designed based on the two-dimensional optimized expansion lines.The influence rules incorporated certain key design parameters affecting the lift and thrust performance of the configuration,such as the ratio of the lengths of the lower expansion ramp to the afterbody (l/L),the dip angle of the lower expansion ramp ω,and the ratio of exit height to the length of afterbody (H/L).Under these conditions,we found that the integrated configuration has optimal performance when l/L=1/6,H/L=0.35 and =10°.We also showed that the presence of a side-board promotes lift and thrust performance,and effectively prevents the leakage of high pressure gas.