As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this p...As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this paper,heat treatment DWTAS as a supplement cementitious material was used to prepare a green cementing material.The results show that the 800℃ is considered as the optimum heat treatment temperature for DWTAS.DWTAS-800℃ is fully activated after thermal decomposition to form incompletely crystallized highly activeγ-Al_(2)O_(3) and active SiO_(2).The addition of DWTAS promoted the formation of ettringite and C-(A)-S-H gel,which could make up for the low early compressive strength of cementing materials to a certain extent.When cured for 90 days,the compressive strength of the mortar with 30% DWTAS-800℃ reached 44.86 MPa.The dynamic process was well simulated by Krstulovi′c-Dabi′c hydration kinetics model.This study provided a methodology for the fabrication of environmentally friendly and cost-effective compound cementitiousmaterials and proposed a“waste-to-resource”strategy for the sustainable management of typical solid wastes.展开更多
基金This work is supported by the National Key Research and Development Program of China(No.2022YFC3203203)the Outstanding Youth Science Foundation of Shaanxi Province(No.2023-JC-JQ-36)the National Natural Science Foundation of China(No.52300121).
文摘As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this paper,heat treatment DWTAS as a supplement cementitious material was used to prepare a green cementing material.The results show that the 800℃ is considered as the optimum heat treatment temperature for DWTAS.DWTAS-800℃ is fully activated after thermal decomposition to form incompletely crystallized highly activeγ-Al_(2)O_(3) and active SiO_(2).The addition of DWTAS promoted the formation of ettringite and C-(A)-S-H gel,which could make up for the low early compressive strength of cementing materials to a certain extent.When cured for 90 days,the compressive strength of the mortar with 30% DWTAS-800℃ reached 44.86 MPa.The dynamic process was well simulated by Krstulovi′c-Dabi′c hydration kinetics model.This study provided a methodology for the fabrication of environmentally friendly and cost-effective compound cementitiousmaterials and proposed a“waste-to-resource”strategy for the sustainable management of typical solid wastes.