Organic matters in drinking water of Kaschin-Beck disease areas were extracted. Then analyses and characterization were performed by means of multiply chemical and physical methods. The results did not show the obviou...Organic matters in drinking water of Kaschin-Beck disease areas were extracted. Then analyses and characterization were performed by means of multiply chemical and physical methods. The results did not show the obvious difference in the frame structure of humic substances and the structure of rmcromolecular compounds in the drinking water of disease and non-disease areas, but the difference in the contents of some micromolecular compounds and radicals. The investigation also includes the preliminary research on the photoreaction of drinking water from disease and non-disease areas and the accumulation of natural organic matter in the bone of tested animals.展开更多
While plastic water bottles are known to potentially release various volatile organic compounds(VOCs)when exposed to light,existing knowledge in this field remains limited.In this study,we systematically examined the ...While plastic water bottles are known to potentially release various volatile organic compounds(VOCs)when exposed to light,existing knowledge in this field remains limited.In this study,we systematically examined the composition,yield,and toxicity of VOCs released from six plastic containers obtained from different continents under UV-A and solar irradiation.After light exposure,all containers released VOCs,including alkanes,alkenes,alcohols,aldehydes,carboxylic acids,aromatics,etc.The 1#,3#,4#,5#,and 6#containers exhibited 35,32,19,24 and 37 species of VOCs,respectively.Specifically,the 2#container released 28 and 32 series of VOCs after 1-day(short-term)and 7-day(long-term)UV-A irradiation,respectively,compared to 30 and 32 species under solar irradiation.Over half of the VOCs identified were oxidized compounds alongside various short-chain hydrocarbons.Significant differences in VOC compositions among the containers were observed,potentially originating from light-induced aging and degradation of the polyethylene terephthalate structure in the containers.Toxicological predictions unveiled distinctive toxic characteristics of VOCs from each container.For example,among the various VOCs produced by the 2#container,straight-chain alkanes like n-hexadecane(544-76-3)were identified as the most toxic compounds.After long-term irradiation,the yield of these toxic VOCs from the 2#container ranged from 0.11 ng/g to 0.79 ng/g.Considering the small mass of a single bottle,the volatilization of VOCs from an individual container would be insignificant.Even after prolonged exposure to light,the potential health risks associated with inhaling VOCs when opening and drinking bottled water appear manageable.展开更多
A rapid,sensitive,and cost-effective analyticalmethod was developed for the analysis of selected semivolatileorganic compounds in water.The method used anautomated online solid-phase extraction technique coupledwith p...A rapid,sensitive,and cost-effective analyticalmethod was developed for the analysis of selected semivolatileorganic compounds in water.The method used anautomated online solid-phase extraction technique coupledwith programmed-temperature vaporization large-volumeinjection gas chromatography/mass spectrometry.Thewater samples were extracted by using a fully automatedmobile rack system based on x-y-z robotic techniquesusing syringes and disposable 96-well extraction plates.The method was validated for the analysis of 30 semivolatileanalytes in drinking water,groundwater,andsurface water.For a sample volume of 10 mL,the linearcalibrations ranged from 0.01 or 0.05 to 2.5μg·L^(-1),and themethod detection limits were less than 0.1μg·L^(-1).For thereagent water samples fortified at 1.0μg·L^(-1)and2.0μg·L^(-1),the obtained mean absolute recoveries were70%-130%with relative standard deviations of less than20%for most analytes.For the drinking water,groundwater,and surface water samples fortified at 1.0μg·L^(-1),theobtained mean absolute recoveries were 50%-130%withrelative standard deviations of less than 20%for mostanalytes.The new method demonstrated three advantages:1)no manipulation except the fortification of surrogatestandards prior to extraction;2)significant cost reductionassociated with sample collection,shipping,storage,andpreparation;and 3)reduced exposure to hazardous solventsand other chemicals.As a result,this new automatedmethod can be used as an effective approach for screeningand/or compliance monitoring of selected semi-volatileorganic compounds in water.展开更多
文摘Organic matters in drinking water of Kaschin-Beck disease areas were extracted. Then analyses and characterization were performed by means of multiply chemical and physical methods. The results did not show the obvious difference in the frame structure of humic substances and the structure of rmcromolecular compounds in the drinking water of disease and non-disease areas, but the difference in the contents of some micromolecular compounds and radicals. The investigation also includes the preliminary research on the photoreaction of drinking water from disease and non-disease areas and the accumulation of natural organic matter in the bone of tested animals.
基金supported by the National Natural Science Foundation of China(Grant No.42377373)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2021SP208).
文摘While plastic water bottles are known to potentially release various volatile organic compounds(VOCs)when exposed to light,existing knowledge in this field remains limited.In this study,we systematically examined the composition,yield,and toxicity of VOCs released from six plastic containers obtained from different continents under UV-A and solar irradiation.After light exposure,all containers released VOCs,including alkanes,alkenes,alcohols,aldehydes,carboxylic acids,aromatics,etc.The 1#,3#,4#,5#,and 6#containers exhibited 35,32,19,24 and 37 species of VOCs,respectively.Specifically,the 2#container released 28 and 32 series of VOCs after 1-day(short-term)and 7-day(long-term)UV-A irradiation,respectively,compared to 30 and 32 species under solar irradiation.Over half of the VOCs identified were oxidized compounds alongside various short-chain hydrocarbons.Significant differences in VOC compositions among the containers were observed,potentially originating from light-induced aging and degradation of the polyethylene terephthalate structure in the containers.Toxicological predictions unveiled distinctive toxic characteristics of VOCs from each container.For example,among the various VOCs produced by the 2#container,straight-chain alkanes like n-hexadecane(544-76-3)were identified as the most toxic compounds.After long-term irradiation,the yield of these toxic VOCs from the 2#container ranged from 0.11 ng/g to 0.79 ng/g.Considering the small mass of a single bottle,the volatilization of VOCs from an individual container would be insignificant.Even after prolonged exposure to light,the potential health risks associated with inhaling VOCs when opening and drinking bottled water appear manageable.
基金The authors thank LEAP Technologies(Carrboro,NC,USA)for providing the technical support of the automated solid-phase extraction system.
文摘A rapid,sensitive,and cost-effective analyticalmethod was developed for the analysis of selected semivolatileorganic compounds in water.The method used anautomated online solid-phase extraction technique coupledwith programmed-temperature vaporization large-volumeinjection gas chromatography/mass spectrometry.Thewater samples were extracted by using a fully automatedmobile rack system based on x-y-z robotic techniquesusing syringes and disposable 96-well extraction plates.The method was validated for the analysis of 30 semivolatileanalytes in drinking water,groundwater,andsurface water.For a sample volume of 10 mL,the linearcalibrations ranged from 0.01 or 0.05 to 2.5μg·L^(-1),and themethod detection limits were less than 0.1μg·L^(-1).For thereagent water samples fortified at 1.0μg·L^(-1)and2.0μg·L^(-1),the obtained mean absolute recoveries were70%-130%with relative standard deviations of less than20%for most analytes.For the drinking water,groundwater,and surface water samples fortified at 1.0μg·L^(-1),theobtained mean absolute recoveries were 50%-130%withrelative standard deviations of less than 20%for mostanalytes.The new method demonstrated three advantages:1)no manipulation except the fortification of surrogatestandards prior to extraction;2)significant cost reductionassociated with sample collection,shipping,storage,andpreparation;and 3)reduced exposure to hazardous solventsand other chemicals.As a result,this new automatedmethod can be used as an effective approach for screeningand/or compliance monitoring of selected semi-volatileorganic compounds in water.