Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive f...Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.展开更多
In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided...In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided by steel rope, increasing force by the movable pulley group, modular, convenient and flexible. Dynamics model for controller is deduced based on the constitutive equation of viscoelasticity. Controller is designed for position control and is based on the viscoelasticity dynamics model compensation control strategy proposed. The control system is based on the TURBO PMAC multi-axis motion control card.Prototype loading experiments and velocity experiments results show that the FDU can reach 2 Hz with no load and the max speed of 30(°)/s. The FDU has the capability of the load torque 11.2 N·m and the speed of 24(°)/s simultaneously, and the frequency response is 1.3 Hz. The FDU can be used to be the pitch joint of hip for biped robot whose walking speed is 0.144 km/h theoretically.展开更多
The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle drivin...The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.展开更多
Driver behavior modeling is becoming increasingly important in the study of traffic safety and devel- opment of cognitive vehicles. An algorithm for dealing with reliability for both digital driving and conventional d...Driver behavior modeling is becoming increasingly important in the study of traffic safety and devel- opment of cognitive vehicles. An algorithm for dealing with reliability for both digital driving and conventional driving has been developed in this paper. Problems of digital driving error classification, digital driving error probability quantification and digital driving reliability simulation have been addressed using a comparison re- search method. Simulation results show that driving reliability analysis discussed here is capable of identifying digital driving behavior characteristics and achieving safety assessment of intelligent transportation system.展开更多
The North Atlantic Oscillation(NAO)is the most prominent mode of atmospheric variability in the Northern Hemisphere.Because of the close relationship between the NAO and regional climate in Eurasia,North Atlantic,and ...The North Atlantic Oscillation(NAO)is the most prominent mode of atmospheric variability in the Northern Hemisphere.Because of the close relationship between the NAO and regional climate in Eurasia,North Atlantic,and North America,improving the prediction skill for the NAO has attracted much attention.Previous studies that focused on the predictability of the NAO were often based upon simulations by climate models.In this study,the authors took advantage of Slow Feature Analysis to extract information on the driving forces from daily NAO index and introduced it into phase-space reconstruction.By computing the largest Lyapunov exponent,the authors found that the predictability of daily NAO index shows a significant increase when its driving force signal is considered.Furthermore,the authors conducted a short-term prediction for the NAO by using a global prediction model for chaotic time series that incorporated the driving-force information.Results showed that the prediction skill for the NAO can be largely increased.In addition,results from wavelet analysis suggested that the driving-force signal of the NAO is associated with three basic drivers:the annual cycle(1.02 yr),the quasi-biennial oscillation(QBO)(2.44 yr);and the solar cycle(11.6 yr),which indicates the critical roles of the QBO and solar activities in the predictability of the NAO.展开更多
Ganzhou Orange Industrial Clusters (GOIC for short) is mainly characterized as follows. (1)The Government's driving force is the key factor for the formation and development of GOIC; (2)the interaction between ...Ganzhou Orange Industrial Clusters (GOIC for short) is mainly characterized as follows. (1)The Government's driving force is the key factor for the formation and development of GOIC; (2)the interaction between market and industry; (3)the specific geography and natural resources act as a carrier; (4)with a strong sense of innovation; (5)it is still at the early stage of development, with a certain high cost.展开更多
基金National Natural Science Foundation of China(Grant No.11872120).
文摘Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.
基金Project(2006AA04Z201,2012AA041601)supported by the National High-Tech Research and Development Program of China
文摘In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided by steel rope, increasing force by the movable pulley group, modular, convenient and flexible. Dynamics model for controller is deduced based on the constitutive equation of viscoelasticity. Controller is designed for position control and is based on the viscoelasticity dynamics model compensation control strategy proposed. The control system is based on the TURBO PMAC multi-axis motion control card.Prototype loading experiments and velocity experiments results show that the FDU can reach 2 Hz with no load and the max speed of 30(°)/s. The FDU has the capability of the load torque 11.2 N·m and the speed of 24(°)/s simultaneously, and the frequency response is 1.3 Hz. The FDU can be used to be the pitch joint of hip for biped robot whose walking speed is 0.144 km/h theoretically.
基金funded by the Energy Policyand Planning Office (EPPO) of Thailand
文摘The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.
基金Sponsored by the National Natural Science Foundation of China(50878023)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘Driver behavior modeling is becoming increasingly important in the study of traffic safety and devel- opment of cognitive vehicles. An algorithm for dealing with reliability for both digital driving and conventional driving has been developed in this paper. Problems of digital driving error classification, digital driving error probability quantification and digital driving reliability simulation have been addressed using a comparison re- search method. Simulation results show that driving reliability analysis discussed here is capable of identifying digital driving behavior characteristics and achieving safety assessment of intelligent transportation system.
基金supported by the National Key R&D Program of China [grant number 2017YFC1501804]the National Natural Science Foundation of China [grant number41575058]
文摘The North Atlantic Oscillation(NAO)is the most prominent mode of atmospheric variability in the Northern Hemisphere.Because of the close relationship between the NAO and regional climate in Eurasia,North Atlantic,and North America,improving the prediction skill for the NAO has attracted much attention.Previous studies that focused on the predictability of the NAO were often based upon simulations by climate models.In this study,the authors took advantage of Slow Feature Analysis to extract information on the driving forces from daily NAO index and introduced it into phase-space reconstruction.By computing the largest Lyapunov exponent,the authors found that the predictability of daily NAO index shows a significant increase when its driving force signal is considered.Furthermore,the authors conducted a short-term prediction for the NAO by using a global prediction model for chaotic time series that incorporated the driving-force information.Results showed that the prediction skill for the NAO can be largely increased.In addition,results from wavelet analysis suggested that the driving-force signal of the NAO is associated with three basic drivers:the annual cycle(1.02 yr),the quasi-biennial oscillation(QBO)(2.44 yr);and the solar cycle(11.6 yr),which indicates the critical roles of the QBO and solar activities in the predictability of the NAO.
文摘Ganzhou Orange Industrial Clusters (GOIC for short) is mainly characterized as follows. (1)The Government's driving force is the key factor for the formation and development of GOIC; (2)the interaction between market and industry; (3)the specific geography and natural resources act as a carrier; (4)with a strong sense of innovation; (5)it is still at the early stage of development, with a certain high cost.