Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River...Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.展开更多
Vegetation resilience(VR),providing an objective measure of ecosystem health,has received considerable attention,however,there is still limited understanding of whether the dominant factors differ across different cli...Vegetation resilience(VR),providing an objective measure of ecosystem health,has received considerable attention,however,there is still limited understanding of whether the dominant factors differ across different climate zones.We took the three national parks(Hainan Tropical Rainforest National Park,HTR;Wuyishan National Park,WYS;and Northeast Tiger and Leopard National Park,NTL)of China with less human interference as cases,which are distributed in different climatic zones,including tropical,subtropical and temperate monsoon climates,respectively.Then,we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression(GWR)model as well.The results revealed that:(1)from 2000 to 2020,the Normalized Difference Vegetation Index(NDVI)of the three national parks fluctuated between 0.800 and 0.960,exhibiting an overall upward trend,with the mean NDVI of NTL(0.923)>HTR(0.899)>WYS(0.823);(2)the positive trend decay time of vegetation exceeded that of negative trend,indicating vegetation gradual recovery of the three national parks since 2012;(3)the VR of HTR was primarily influenced by elevation,aspect,average annual temperature change(AATC),and average annual precipitation change(AAPC);the WYS'VR was mainly affected by elevation,average annual precipitation(AAP),and AAPC;while the terrain factors(elevation and slope)were the main driving factors of VR in NTL;(4)among the main factors influencing the VR changes,the AAPC had the highest proportion in HTR(66.7%),and the AAP occupied the largest area proportion in WYS(80.4%).While in NTL,elevation served as the main driving factor for the VR,encompassing 64.2%of its area.Consequently,our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks,while elevation was the main factors that drove the VR in NTL.Our research has promoted a deeper understanding of the driving mechanism behind the VR.展开更多
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi...The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.展开更多
Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have dev...Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar.展开更多
High-quality development is the primary task of comprehensively building a socialist,modern country,as well as the primary task of building urban agglomerations in China.Based on the five development concepts,this pap...High-quality development is the primary task of comprehensively building a socialist,modern country,as well as the primary task of building urban agglomerations in China.Based on the five development concepts,this paper used the entropy method to measure the High Quality Development Index(HQDI)of the five major urban agglomerations.The results showed that the HQDI of the five major urban agglomerations shows a fluctuating upward trend.First,using the Dagum Gini coefficient to explore the sources of HQDI development differences in urban agglomerations,we found that the main source of HQDI differences in urban agglomerations was inter-regional differences,while intra-regional differences were not important.Second,kernel density estimation was used to test the dynamic evolution trend of HQDI within urban agglomerations.There was a polarisation phenomenon in the HQDI of urban agglomerations,such as the Pearl River Delta urban agglomeration and the Chengdu-Chongqing urban agglomeration.But overall,the degree of imbalance had decreased.Third,using geographic detectors to examine the driving factors of HQDI in urban agglomerations,we found that the main driving forces for improving HQDI in urban agglomerations were economic growth,artificial intelligence technology and fiscal decentralisation.All the interaction factors had greater explanatory power for the spatial differentiation of HQDI,which can be divided into two types:two-factor improvement and non-linear improvement.This study is conducive to improving and enriching the theoretical system for evaluating the high quality development of urban agglomerations,and provides policy references for promoting the high quality development of urban agglomerations.展开更多
For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of A...Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of Asia from 2001 to 2020 were analyzed by Sen and MK trend analysis methods in this study .Moreover , a GPP change attribution model was established to explore the driving influences of factors such as Leaf Area Index (LAI), Land Surface Temperature (LST), Vapor Pressure Deficit (VPD), Soil Moisture, Solar Radiation and Wind Speed on GPP. The results indicate that summer GPP values are significantly higher than those in other months, accounting for 60.8% of the annual total GPP;spring and autumn contribute 18.91% and 13.04%, respectively. In winter, due to vegetation being nearly dormant, the contribution is minimal at 7.19%. Spatially, GPP shows a decreasing trend from southeast to northwest. LAI primarily drives the spatial and seasonal variations of regional GPP, while VPD, surface temperature, solar radiation, and soil moisture have varying impacts on GPP across different dimensions. Additionally, wind speed exhibits a minor contribution to GPP across different dimensions.展开更多
Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establi...Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establish the driving force model of utilized change of cultivated land. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed, and the differences during all factors were compared. The study provides some decision basis for sustainable utilization and management of land resources in Qinghai Lake Area.展开更多
Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(...Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.展开更多
As Hainan Island belonged to tropical monsoon influenced region, vegetation coverage was high. It is accessible to acquire the vegetation index information from remote sensing images, but predicting the average vegeta...As Hainan Island belonged to tropical monsoon influenced region, vegetation coverage was high. It is accessible to acquire the vegetation index information from remote sensing images, but predicting the average vegetation index in spatial distributing trend is not available. Under the condition that the average vegetation index values of observed stations in different seasons were known, it was possible to qualify the vegetation index values in study area and predict the NDVI (Normal Different Vegetation Index) change trend. In order to learn the variance trend of NDVI and the relationships between NDVI and temperature, precipitation, and land cover in Hainan Island, in this paper, the average seasonal NDVI values of 18 representative stations in Hainan Island were derived by a standard 10-day composite NDVI generated from MODIS imagery. ArcGIS Geostatistical Analyst was applied to predict the seasonal NDVI change trend by the Kriging method in Hainan Island. The correlation of temperature, precipitation, and land cover with NDVI change was analyzed by correlation analysis method. The results showed that the Kriging method of ARCGIS Geostatistical Analyst was a good way to predict the NDVI change trend. Temperature has the primary influence on NDVI, followed by precipitation and land-cover in Hainan Island.展开更多
The abandonment of cultivated land in southern China was gradually obvious.This research aims to provide a reference for solving the abandonment of cultivated land in hilly regions and promote rural development in Chi...The abandonment of cultivated land in southern China was gradually obvious.This research aims to provide a reference for solving the abandonment of cultivated land in hilly regions and promote rural development in China.We examined Longnan county located in the hilly regions of southern China as an example,where abandoned cultivated land is very common.We analyzed its land use data with a field survey to identify the abandoned cultivated land and geospatial characteristics.From the two aspects of social and natural factors,we analyzed the factors driving cultivated land abandonment with the help of Geodetector.The results showed that in 2019,the total area of the abandoned cultivated land in Longnan county was 4,962.35 hm^(2),covering 39.51% of this region.Among the topographic factors,the abandonment rate is positively correlated with elevation and slope gradient,but not with slope direction.Among the land parcel conditions,the abandonment rate is positively correlated with the access to road network and cultivation distance from settlement.At the county level,the abandonment of cultivated land in study area was affected by multiple factors,among which,the direct factor was the reduction in the labor force,such as the decrease of farming laborers and the increase of female population,which made farming unsustainable.Changes in production factors also promoted transformations in farmers’motivation to engage in production,such as the decrease of grain crops and the increase of cash crops,which was the indirect factor affecting cultivated land abandonment.The development of the rural nonagricultural industry affected farmers’enthusiasm,such as the decrease of farming households,which was the fundamental factor leading to cultivated land abandonment in this area.展开更多
Droughts are recurrent in southwest China due to the fragility and sensitivity of the karst environment.These events have serious impacts on local agricultural output,ecological diversity,and social stability.Understa...Droughts are recurrent in southwest China due to the fragility and sensitivity of the karst environment.These events have serious impacts on local agricultural output,ecological diversity,and social stability.Understanding spatiotemporal variations and driving factors of drought in this area is of extreme importance for effective mitigation measures.The karst areas situated in southwest China were spatially divided into seven sub-regions according to the topography and degree of karst development.Drought indices,including vegetation condition index(VCI),temperature condition index(TCI),vegetation health index(VHI),normalized vegetation water supply index(NVSWI),and temperature vegetation drought index(TVDI),were calculated from MODIS data during 2000 and 2018for each sub-region,and drought patterns were examined.The results show that droughts were found to be concentrated in sub-regions such as karst basin,karst plateau,karst gorge,and karst depression areas.Furthermore,there were more drought conditions in karst areas than in non-karst areas.In addition,improvements to drought situation in the study period are significant(p<0.05),and mitigation areas respectively account for 80.1%(NVSWI),74.2%(VCI),74.2%(VHI),30.1%(TCI)and 33.2%(TVDI)of the study area,while drought expands slightly(<3.4%)in areas undergoing urban construction.Pearson's correlation coefficients between drought indices and temperature are generally above 0.5 in all sub-regions.However,the correlation coefficients between drought indices and precipitation mostly fall within the range of 0.3-0.4,indicating a weaker correlation.Our explanation for the spatiotemporal patterns of drought is that karst phenomena are the natural basis of drought and agricultural production is one of important driving forces.Positive changes of drought conditions have benefited from efforts to control rocky desertification and restore ecosystems over the past years.展开更多
With the rapid socio-economic development and urban expansion,land subsidence has emerged as a major environmental issue,impeding the high-quality development of the plain area in eastern Zhengzhou City,Henan Province...With the rapid socio-economic development and urban expansion,land subsidence has emerged as a major environmental issue,impeding the high-quality development of the plain area in eastern Zhengzhou City,Henan Province,China.However,effective prevention and control of land subsidence in this region have been challenging due to the lack of comprehensive surface deformations monitoring and the quantitative analysis of the factors driving these deformations.In order to accurately identify the dominant factor driving surface deformations in the study area,this study utilized the Persistent Scattered Interferometric Synthetic Aperture Radar(PS-InSAR)technique to acquire the spatio-temporal distribution of surface deformations from January 2018 to March 2020.The acquired data was verified using leveling data.Subsequently,GIS spatial analysis was employed to investigate the responses of surface deformations to the driving factors.The findings are as follows:Finally,the geographical detector model was utilized to quantify the contributions of the driving factors and reveal the mechanisms of their interactions.The findings are as follows:(1)Surface deformations in the study area are dominated by land subsidence,concentrated mainly in Zhongmu County,with a deformation rate of−12.5–−37.1 mm/a.In contrast,areas experiencing surface uplift are primarily located downtown,with deformation rates ranging from 0 mm to 8 mm;(2)Groundwater level,lithology,and urban construction exhibit strong spatial correlations with cumulative deformation amplitude;(3)Groundwater level of the second aquifer group is the primary driver of spatially stratified heterogeneity in surface deformations,with a contributive degree of 0.5328.The contributive degrees of driving factors are significantly enhanced through interactions.Groundwater level and the cohesive soil thickness in the second aquifer group show the strongest interactions in the study area.Their total contributive degree increases to 0.5722 after interactions,establishing them as the primary factors influencing surface deformation patterns in the study area.The results of this study can provide a theoretical basis and scientific support for precise prevention and control measures against land subsidence in the study area,as well as contributing to research on the underlying mechanisms.展开更多
基金the National Natural Science Foundation of China(31971859)the Doctoral Research Start-up Fund of Northwest A&F University,China(Z1090121109)the Shaanxi Science and Technology Development Plan Project(2023-JC-QN-0197).
文摘Weihe River basin is of great significance to analyze the changes of land use pattern and landscape ecological risk and to improve the ecological basis of regional development.Based on land use data of the Weihe River basin in 2000,2010,and 2020,with the support of Aeronautical Reconnaissance Coverage Geographic Information System(ArcGIS),GeoDa,and other technologies,this study analyzed the spatial-temporal characteristics and driving factors of land use pattern and landscape ecological risk.Results showed that land use structure of the Weihe River basin has changed significantly,with the decrease of cropland and the increase of forest land and construction land.In the past 20 a,cropland has decreased by 7347.70 km2,and cropland was mainly converted into forest land,grassland,and construction land.The fragmentation and dispersion of ecological landscape pattern in the Weihe River basin were improved,and land use pattern became more concentrated.Meanwhile,landscape ecological risk of the Weihe River basin has been improved.Severe landscape ecological risk area decreased by 19,177.87 km2,high landscape ecological risk area decreased by 3904.35 km2,and moderate and low landscape ecological risk areas continued to increase.It is worth noting that landscape ecological risks in the upper reaches of the Weihe River basin are still relatively serious,especially in the contiguous areas of high ecological risk,such as Tianshui,Pingliang,Dingxi areas and some areas of Ningxia Hui Autonomous Region.Landscape ecological risk showed obvious spatial dependence,and high ecological risk area was concentrated.Among the driving factors,population density,precipitation,normalized difference vegetation index(NDVI),and their interactions are the most important factors affecting the landscape ecological risk of the Weihe River basin.The findings significantly contribute to our understanding of the ecological dynamics in the Weihe River basin,providing crucial insights for sustainable management in the region.
基金the National Natural Science Foundation of China(grant no.31971639)the Natural Science Foundation of Fujian Province(grant no.2023J01477)the Special Investigation on Science and Technology Infrastructure Resources(grant no.2019FY202108)for their support of this research。
文摘Vegetation resilience(VR),providing an objective measure of ecosystem health,has received considerable attention,however,there is still limited understanding of whether the dominant factors differ across different climate zones.We took the three national parks(Hainan Tropical Rainforest National Park,HTR;Wuyishan National Park,WYS;and Northeast Tiger and Leopard National Park,NTL)of China with less human interference as cases,which are distributed in different climatic zones,including tropical,subtropical and temperate monsoon climates,respectively.Then,we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression(GWR)model as well.The results revealed that:(1)from 2000 to 2020,the Normalized Difference Vegetation Index(NDVI)of the three national parks fluctuated between 0.800 and 0.960,exhibiting an overall upward trend,with the mean NDVI of NTL(0.923)>HTR(0.899)>WYS(0.823);(2)the positive trend decay time of vegetation exceeded that of negative trend,indicating vegetation gradual recovery of the three national parks since 2012;(3)the VR of HTR was primarily influenced by elevation,aspect,average annual temperature change(AATC),and average annual precipitation change(AAPC);the WYS'VR was mainly affected by elevation,average annual precipitation(AAP),and AAPC;while the terrain factors(elevation and slope)were the main driving factors of VR in NTL;(4)among the main factors influencing the VR changes,the AAPC had the highest proportion in HTR(66.7%),and the AAP occupied the largest area proportion in WYS(80.4%).While in NTL,elevation served as the main driving factor for the VR,encompassing 64.2%of its area.Consequently,our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks,while elevation was the main factors that drove the VR in NTL.Our research has promoted a deeper understanding of the driving mechanism behind the VR.
基金supported in part by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes(PGPEC2304)+1 种基金Yunnan Normal University,China.This study was also sponsored by the Scientific Research Project of Education Department of Hubei Province(Grant No.B2022262)the Philosophy and Social Sciences Research Project of Education Department of Hubei Province(Grant No.22G024).
文摘The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.
基金This research was funded by the National Natural Science Foundation of China(grant no.32271881).
文摘Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar.
基金Under the auspices of National Natural Science Foundation of China(No.72373094,72303149)Scientific Research Start-up Funds of Guangdong Ocean University(No.060302082319)。
文摘High-quality development is the primary task of comprehensively building a socialist,modern country,as well as the primary task of building urban agglomerations in China.Based on the five development concepts,this paper used the entropy method to measure the High Quality Development Index(HQDI)of the five major urban agglomerations.The results showed that the HQDI of the five major urban agglomerations shows a fluctuating upward trend.First,using the Dagum Gini coefficient to explore the sources of HQDI development differences in urban agglomerations,we found that the main source of HQDI differences in urban agglomerations was inter-regional differences,while intra-regional differences were not important.Second,kernel density estimation was used to test the dynamic evolution trend of HQDI within urban agglomerations.There was a polarisation phenomenon in the HQDI of urban agglomerations,such as the Pearl River Delta urban agglomeration and the Chengdu-Chongqing urban agglomeration.But overall,the degree of imbalance had decreased.Third,using geographic detectors to examine the driving factors of HQDI in urban agglomerations,we found that the main driving forces for improving HQDI in urban agglomerations were economic growth,artificial intelligence technology and fiscal decentralisation.All the interaction factors had greater explanatory power for the spatial differentiation of HQDI,which can be divided into two types:two-factor improvement and non-linear improvement.This study is conducive to improving and enriching the theoretical system for evaluating the high quality development of urban agglomerations,and provides policy references for promoting the high quality development of urban agglomerations.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
文摘Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of Asia from 2001 to 2020 were analyzed by Sen and MK trend analysis methods in this study .Moreover , a GPP change attribution model was established to explore the driving influences of factors such as Leaf Area Index (LAI), Land Surface Temperature (LST), Vapor Pressure Deficit (VPD), Soil Moisture, Solar Radiation and Wind Speed on GPP. The results indicate that summer GPP values are significantly higher than those in other months, accounting for 60.8% of the annual total GPP;spring and autumn contribute 18.91% and 13.04%, respectively. In winter, due to vegetation being nearly dormant, the contribution is minimal at 7.19%. Spatially, GPP shows a decreasing trend from southeast to northwest. LAI primarily drives the spatial and seasonal variations of regional GPP, while VPD, surface temperature, solar radiation, and soil moisture have varying impacts on GPP across different dimensions. Additionally, wind speed exhibits a minor contribution to GPP across different dimensions.
基金Supported by The Regional Sustainable Development of the Qing-TibetPlateau(2004)~~
文摘Using path analysis, correlation analysis, partial correlation analysis and system dynamics method to study the driving force of cultivated land in Qinghai Lake Area, and using gradually regression analysis to establish the driving force model of utilized change of cultivated land. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed, and the differences during all factors were compared. The study provides some decision basis for sustainable utilization and management of land resources in Qinghai Lake Area.
基金Under the auspices of National Natural Science Foundation of China (No. 52268008, 51768001)。
文摘Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the development of China's urban agglomerations. This study applied the Future Land Use Simulation(FLUS) model to predict the land use pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urbanized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs(In VEST) model was employed to analyse the spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted Regression(GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expansion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking capacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 10^(6) t compared with that for 2020 and the average carbon density will decrease by 0.96 kg/m^(2) compared with that for 2020. Carbon storage in the agricultural priority scenario will increase by 84.11 × 10^(6) t, and the average carbon density will decrease by 0.72 kg/m^(2). Carbon storage in the ecological priority scenario will increase by 3.03 × 10^(6) t, and the average carbon density will increase by 0.03 kg/m^(2). Under the premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecological space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.
文摘As Hainan Island belonged to tropical monsoon influenced region, vegetation coverage was high. It is accessible to acquire the vegetation index information from remote sensing images, but predicting the average vegetation index in spatial distributing trend is not available. Under the condition that the average vegetation index values of observed stations in different seasons were known, it was possible to qualify the vegetation index values in study area and predict the NDVI (Normal Different Vegetation Index) change trend. In order to learn the variance trend of NDVI and the relationships between NDVI and temperature, precipitation, and land cover in Hainan Island, in this paper, the average seasonal NDVI values of 18 representative stations in Hainan Island were derived by a standard 10-day composite NDVI generated from MODIS imagery. ArcGIS Geostatistical Analyst was applied to predict the seasonal NDVI change trend by the Kriging method in Hainan Island. The correlation of temperature, precipitation, and land cover with NDVI change was analyzed by correlation analysis method. The results showed that the Kriging method of ARCGIS Geostatistical Analyst was a good way to predict the NDVI change trend. Temperature has the primary influence on NDVI, followed by precipitation and land-cover in Hainan Island.
基金supported by the University Humanities and Social Sciences Project of Jiangxi Province(Grant No.JC20108 and GL20225)the National Natural Science Foundation of China(Grant No.42267068)。
文摘The abandonment of cultivated land in southern China was gradually obvious.This research aims to provide a reference for solving the abandonment of cultivated land in hilly regions and promote rural development in China.We examined Longnan county located in the hilly regions of southern China as an example,where abandoned cultivated land is very common.We analyzed its land use data with a field survey to identify the abandoned cultivated land and geospatial characteristics.From the two aspects of social and natural factors,we analyzed the factors driving cultivated land abandonment with the help of Geodetector.The results showed that in 2019,the total area of the abandoned cultivated land in Longnan county was 4,962.35 hm^(2),covering 39.51% of this region.Among the topographic factors,the abandonment rate is positively correlated with elevation and slope gradient,but not with slope direction.Among the land parcel conditions,the abandonment rate is positively correlated with the access to road network and cultivation distance from settlement.At the county level,the abandonment of cultivated land in study area was affected by multiple factors,among which,the direct factor was the reduction in the labor force,such as the decrease of farming laborers and the increase of female population,which made farming unsustainable.Changes in production factors also promoted transformations in farmers’motivation to engage in production,such as the decrease of grain crops and the increase of cash crops,which was the indirect factor affecting cultivated land abandonment.The development of the rural nonagricultural industry affected farmers’enthusiasm,such as the decrease of farming households,which was the fundamental factor leading to cultivated land abandonment in this area.
基金the Guangxi Natural Science Foundation(NO.2022GXNSFBA035639)the Natural Science Foundation of China(NO.42064003)the Guangxi Key Laboratory of Spatial Information and Geomatics Program(Gui KeNeng 19-050-11-23)。
文摘Droughts are recurrent in southwest China due to the fragility and sensitivity of the karst environment.These events have serious impacts on local agricultural output,ecological diversity,and social stability.Understanding spatiotemporal variations and driving factors of drought in this area is of extreme importance for effective mitigation measures.The karst areas situated in southwest China were spatially divided into seven sub-regions according to the topography and degree of karst development.Drought indices,including vegetation condition index(VCI),temperature condition index(TCI),vegetation health index(VHI),normalized vegetation water supply index(NVSWI),and temperature vegetation drought index(TVDI),were calculated from MODIS data during 2000 and 2018for each sub-region,and drought patterns were examined.The results show that droughts were found to be concentrated in sub-regions such as karst basin,karst plateau,karst gorge,and karst depression areas.Furthermore,there were more drought conditions in karst areas than in non-karst areas.In addition,improvements to drought situation in the study period are significant(p<0.05),and mitigation areas respectively account for 80.1%(NVSWI),74.2%(VCI),74.2%(VHI),30.1%(TCI)and 33.2%(TVDI)of the study area,while drought expands slightly(<3.4%)in areas undergoing urban construction.Pearson's correlation coefficients between drought indices and temperature are generally above 0.5 in all sub-regions.However,the correlation coefficients between drought indices and precipitation mostly fall within the range of 0.3-0.4,indicating a weaker correlation.Our explanation for the spatiotemporal patterns of drought is that karst phenomena are the natural basis of drought and agricultural production is one of important driving forces.Positive changes of drought conditions have benefited from efforts to control rocky desertification and restore ecosystems over the past years.
基金supported by the China Geological Survey Project(Grant No.DD20189262Grant No.DD20211309)Basic Research Operations Project of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences(SK202206).
文摘With the rapid socio-economic development and urban expansion,land subsidence has emerged as a major environmental issue,impeding the high-quality development of the plain area in eastern Zhengzhou City,Henan Province,China.However,effective prevention and control of land subsidence in this region have been challenging due to the lack of comprehensive surface deformations monitoring and the quantitative analysis of the factors driving these deformations.In order to accurately identify the dominant factor driving surface deformations in the study area,this study utilized the Persistent Scattered Interferometric Synthetic Aperture Radar(PS-InSAR)technique to acquire the spatio-temporal distribution of surface deformations from January 2018 to March 2020.The acquired data was verified using leveling data.Subsequently,GIS spatial analysis was employed to investigate the responses of surface deformations to the driving factors.The findings are as follows:Finally,the geographical detector model was utilized to quantify the contributions of the driving factors and reveal the mechanisms of their interactions.The findings are as follows:(1)Surface deformations in the study area are dominated by land subsidence,concentrated mainly in Zhongmu County,with a deformation rate of−12.5–−37.1 mm/a.In contrast,areas experiencing surface uplift are primarily located downtown,with deformation rates ranging from 0 mm to 8 mm;(2)Groundwater level,lithology,and urban construction exhibit strong spatial correlations with cumulative deformation amplitude;(3)Groundwater level of the second aquifer group is the primary driver of spatially stratified heterogeneity in surface deformations,with a contributive degree of 0.5328.The contributive degrees of driving factors are significantly enhanced through interactions.Groundwater level and the cohesive soil thickness in the second aquifer group show the strongest interactions in the study area.Their total contributive degree increases to 0.5722 after interactions,establishing them as the primary factors influencing surface deformation patterns in the study area.The results of this study can provide a theoretical basis and scientific support for precise prevention and control measures against land subsidence in the study area,as well as contributing to research on the underlying mechanisms.