We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of t...We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non=interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.展开更多
With the occurrence of an adding driving field, the properties of the dispersion and the absorption of a four-level system are changed greatly. The system can produce the normal and anomalous dispersion regions with p...With the occurrence of an adding driving field, the properties of the dispersion and the absorption of a four-level system are changed greatly. The system can produce the normal and anomalous dispersion regions with proper parameters. Here, the driving fields can be seemed as knobs to manipulate the group velocity of a weak probe field between subluminal and superluminal.展开更多
Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
Based on the idea that a squeezing process can be thought of as a total cumulative effect of a large number of tiny squeezing processes, we define a squeeze-like operator with a time-dependent squeeze parameter. Apply...Based on the idea that a squeezing process can be thought of as a total cumulative effect of a large number of tiny squeezing processes, we define a squeeze-like operator with a time-dependent squeeze parameter. Applying this operator to and combining with a system which includes a two-photon interaction between two atoms and an initial vacuum cavity field, and resorting to a resonant strong driving classical field, we obtain an unconventional geometric phase gate with a shorter gating time.展开更多
The spontaneous emission decay dynamics of a tripod configuration four-level atom driven by a single laser field is studied. Under different initial conditions, we discuss the effects of quantum interference and detun...The spontaneous emission decay dynamics of a tripod configuration four-level atom driven by a single laser field is studied. Under different initial conditions, we discuss the effects of quantum interference and detuning of external driving field on atomic spontaneous emission properties. For the larger detuning, the interesting phenomena of the spectral line narrowing are found which stem from the contribution of external driving field.展开更多
A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is gre...A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is greatly reduced, which is important in view of decoherence. Furthermore, the scheme does not need accurate adjustment of the interaction time.展开更多
We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via co...We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a nmch easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.展开更多
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics...The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.展开更多
We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quant...We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quantum dot-cavity system. By employing the master equation theory and the Jaynes-Cummings model, we are able to study the interesting phenomenon of the coupling system. To compare the different behaviors between using our new scheme and the conventional method,we carry out investigatioin for both the 'good system'and 'more realistic system', characterizing several important parameters, such as the cavity population, exciton population and the second-order correlation function at zero time delay. Through numerical simulations,we demonstrate that for both the good system and more realistic system, their lasing regimes can be displaced into other regimes in the presence of a resonant driving field.展开更多
We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely o...We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.展开更多
This paper presents the speed control of a separately excited DC motor using Neural Network (NN) controller in field weakening region. In armature control, speed controller has been used in outer loop while current co...This paper presents the speed control of a separately excited DC motor using Neural Network (NN) controller in field weakening region. In armature control, speed controller has been used in outer loop while current controller in inner loop is used. The function of NN is to predict the field current that realizes the field weakening to drive the motor over rated speed. The parameters of NN are optimized by the Social Spider Optimization (SSO) algorithm. The system has been implemented using MATLAB/SIMULINK software. The simulation results show that the proposed method gives a good performance and is feasible to be applied instead of others conventional combined control methods.展开更多
The field-reversed configuration (FRC) offers an attractive alternative approach to magnetically confined fusion because of its extremely high β, simple linear geometry, and natural divertor for helium ash removal. M...The field-reversed configuration (FRC) offers an attractive alternative approach to magnetically confined fusion because of its extremely high β, simple linear geometry, and natural divertor for helium ash removal. Multi-hundred eV and high density FRCs have been produced using the standard Field Reversed Theta Pinch (RFTP) method, with a confinement scaling that leads to fusion conditions. These FRCs are, however, limited to only tens of mWb fluxes and sub-msec lifetime. Recent progress has been made in building up the flux and sustaining the FRC current using Rotating Magnetic Fields (RMF) in the Translation, Sustainment, and Confinement (TCS) facility at the University of Washington. TCS has demonstrated formation and steady-state sustainment of standard, flux-confined, prolate FRCs. The RMF also provides stability for the n = 2 rotational mode, which is the dominant global instability observed experimentally. Simple calculations show that a strong radially inward force imposed by the RMF increases proportionally to any local outward deformation of the plasma cross section. Evidence of this has been experimentally demonstrated, and the effects of various RMF antenna geometries studied. High temperature FRCs could also be produced in TCS by translating high energy plasmoids formed in the normal theta pinch manner into the confinement chamber containing the RMF antennas. Extremely interesting results were obtained for this translation and capture process. The plasmoids can survive the violent dynamics of supersonic reflections off magnetic mirror structures, producing a stable high-β, near-FRC state with substantial flux conversion from toroidal to poloidal. This is a tribute not only to the robustness of FRCs, but also to the tendency of an FRC to assume a preferred state for a magnetized plasma. The magnetic helicity, as inferred by a simple interpretive model, is approximately preserved, possibly conforming to a high-β relaxation principle.展开更多
Based on the electron’s radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and...Based on the electron’s radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No. 10774143)
文摘We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non=interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.
基金Supported by National Natural Science Foundation of China under Grant Nos.61008063 and 10547108the Key Project of National Natural Science Foundation of China under Grant No.60837004+1 种基金Natural Science Foundation of Education Department of Guangdong Province of China under Grant No.LYM08099Natural Science Foundation of Foshan University
文摘With the occurrence of an adding driving field, the properties of the dispersion and the absorption of a four-level system are changed greatly. The system can produce the normal and anomalous dispersion regions with proper parameters. Here, the driving fields can be seemed as knobs to manipulate the group velocity of a weak probe field between subluminal and superluminal.
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001).
文摘Based on the idea that a squeezing process can be thought of as a total cumulative effect of a large number of tiny squeezing processes, we define a squeeze-like operator with a time-dependent squeeze parameter. Applying this operator to and combining with a system which includes a two-photon interaction between two atoms and an initial vacuum cavity field, and resorting to a resonant strong driving classical field, we obtain an unconventional geometric phase gate with a shorter gating time.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904025,10674037 and 50836002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20092302120024)+3 种基金the China Postdoctoral Science Foundation (Grant No. 20090451007)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology,China (Grant No. HITQNJS. 2009. 030.)the National Basic Research Program of China (Grant No. 2007CB307001)the Program of Excellent Team in Harbin Institute of Technology China
文摘The spontaneous emission decay dynamics of a tripod configuration four-level atom driven by a single laser field is studied. Under different initial conditions, we discuss the effects of quantum interference and detuning of external driving field on atomic spontaneous emission properties. For the larger detuning, the interesting phenomena of the spectral line narrowing are found which stem from the contribution of external driving field.
基金The project supported by the Natural Science Foundation of Education Committee of Fujian Province of China under Grant No. JB03047.
文摘A scheme is proposed to generate the W-type entangled coherent states of three-cavity field. The scheme is based on the resonant atom-field interaction, thus the interaction time between the atom and the cavity is greatly reduced, which is important in view of decoherence. Furthermore, the scheme does not need accurate adjustment of the interaction time.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00200the National Natural Science Foundation of China under Grant No 11074244+3 种基金ARO(W911NF-12-1-0334)DARPA-YFA(N66001-10-1-4025)AFOSR(FA9550-11-1-0313)NSF-PHY(1104546)
文摘We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a nmch easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675115,11204156,11574178,11304179,and 11647172)the Science and Technology Plan Projects of Shandong University,China(Grant No.J16LJ52)
文摘The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274178,61475197 and 61590932the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No 15KJA120002+1 种基金the outstanding Youth Project of Jiangsu Province under Grant No BK20150039the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No YX002001
文摘We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quantum dot-cavity system. By employing the master equation theory and the Jaynes-Cummings model, we are able to study the interesting phenomenon of the coupling system. To compare the different behaviors between using our new scheme and the conventional method,we carry out investigatioin for both the 'good system'and 'more realistic system', characterizing several important parameters, such as the cavity population, exciton population and the second-order correlation function at zero time delay. Through numerical simulations,we demonstrate that for both the good system and more realistic system, their lasing regimes can be displaced into other regimes in the presence of a resonant driving field.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10375023, 10575035 and 10125521, the Program for NCET (No 04-0784), the Key Project of Chinese Ministry of Education (No 205110), and the National Major State Basic Research and Development Programme of China (G2000077400).
文摘We obtain a lower bound on the spacetime-weighted average of the energy density for the scalar field in four-dimensional flat spacetime. The bound takes the form of a quantum inequality. The inequality does not rely on the quantum state and its form is only related to the weights, namely the spacetime sampling functions which are assumed to be smooth, positive and compactly supported. It is found that the inequality is just equal to the temporal quantum energy inequality. When the characteristic length of the temporal sampling function tends to zero, the lower bound becomes divergent. This is consistent with the fact that the spatial restriction on negative energy density does not exist in four-dimensional spacetime.
文摘This paper presents the speed control of a separately excited DC motor using Neural Network (NN) controller in field weakening region. In armature control, speed controller has been used in outer loop while current controller in inner loop is used. The function of NN is to predict the field current that realizes the field weakening to drive the motor over rated speed. The parameters of NN are optimized by the Social Spider Optimization (SSO) algorithm. The system has been implemented using MATLAB/SIMULINK software. The simulation results show that the proposed method gives a good performance and is feasible to be applied instead of others conventional combined control methods.
文摘The field-reversed configuration (FRC) offers an attractive alternative approach to magnetically confined fusion because of its extremely high β, simple linear geometry, and natural divertor for helium ash removal. Multi-hundred eV and high density FRCs have been produced using the standard Field Reversed Theta Pinch (RFTP) method, with a confinement scaling that leads to fusion conditions. These FRCs are, however, limited to only tens of mWb fluxes and sub-msec lifetime. Recent progress has been made in building up the flux and sustaining the FRC current using Rotating Magnetic Fields (RMF) in the Translation, Sustainment, and Confinement (TCS) facility at the University of Washington. TCS has demonstrated formation and steady-state sustainment of standard, flux-confined, prolate FRCs. The RMF also provides stability for the n = 2 rotational mode, which is the dominant global instability observed experimentally. Simple calculations show that a strong radially inward force imposed by the RMF increases proportionally to any local outward deformation of the plasma cross section. Evidence of this has been experimentally demonstrated, and the effects of various RMF antenna geometries studied. High temperature FRCs could also be produced in TCS by translating high energy plasmoids formed in the normal theta pinch manner into the confinement chamber containing the RMF antennas. Extremely interesting results were obtained for this translation and capture process. The plasmoids can survive the violent dynamics of supersonic reflections off magnetic mirror structures, producing a stable high-β, near-FRC state with substantial flux conversion from toroidal to poloidal. This is a tribute not only to the robustness of FRCs, but also to the tendency of an FRC to assume a preferred state for a magnetized plasma. The magnetic helicity, as inferred by a simple interpretive model, is approximately preserved, possibly conforming to a high-β relaxation principle.
基金The project supported by the National Natural Science Foundation of China (No. 10205015)
文摘Based on the electron’s radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.