In the Metals Industry,interruption-free processes to produce high-quality end products are a prerequisite. The main drives together with the mill stands play a key role in the success of rolling mills.The crucial dem...In the Metals Industry,interruption-free processes to produce high-quality end products are a prerequisite. The main drives together with the mill stands play a key role in the success of rolling mills.The crucial demands placed on the drive system are:high-dynamic performance of drive and its control system,ability to handle the process related overloads,smooth running,high availability,high efficiency,easy serviceability and ability to integrate seamlessly with the automation systems.With numerous reference installations and many years of experience Siemens VAI has the wider expertise and the portfolio to provide the right drive for every application. This paper examines the latest innovation,SINAMICS drive technology,for both new drive applications as well as for modernizing the existing drives in rolling mill applications like hot strips mills,plate mills,cold rolling mills,and long rolling mills.展开更多
A modeling method for driving systems of four high rolling mill was put forward in order to analyze the origin of rolling mill’s chatter that brings about light and shade streaks on the surface of steel strip from as...A modeling method for driving systems of four high rolling mill was put forward in order to analyze the origin of rolling mill’s chatter that brings about light and shade streaks on the surface of steel strip from aspect of electromechanical coupling. The process and steps of modeling method was introduced by means of an example. The correctness of the model and the feasibility of the modeling method were verified in simulation experiment.展开更多
The roller’s torsional self excited vibration caused by roller stick slip, and its influence on strip surface quality have been studied. Based on analysis of roller working surface stick slip, roller rotation dynamic...The roller’s torsional self excited vibration caused by roller stick slip, and its influence on strip surface quality have been studied. Based on analysis of roller working surface stick slip, roller rotation dynamics equations have been established. The nonlinear sliding frictional resistance has been linearized, and dynamics equations have been solved according to the characteristics of stick and slip between roller and strip. The results show that: 1) with decreasing stick time t 1, torsional vibration wave pattern gradually transforms from serration into sinusoid, and frictional self excited vibration can cover all frequency components which are lower than that of free vibration; 2) stick time t 1 is directly proportional to torque increment Δ M R , and is inversely proportional to live shaft stiffness K and drive shaft rotational velocity ω ; 3) when slip time t 2 is basically steady, the longer the stick time, the larger the energy that system absorbs and discharges. As the slip time is a constant, it easily arouses strip surface shear impact and surface streaks.展开更多
文摘In the Metals Industry,interruption-free processes to produce high-quality end products are a prerequisite. The main drives together with the mill stands play a key role in the success of rolling mills.The crucial demands placed on the drive system are:high-dynamic performance of drive and its control system,ability to handle the process related overloads,smooth running,high availability,high efficiency,easy serviceability and ability to integrate seamlessly with the automation systems.With numerous reference installations and many years of experience Siemens VAI has the wider expertise and the portfolio to provide the right drive for every application. This paper examines the latest innovation,SINAMICS drive technology,for both new drive applications as well as for modernizing the existing drives in rolling mill applications like hot strips mills,plate mills,cold rolling mills,and long rolling mills.
文摘A modeling method for driving systems of four high rolling mill was put forward in order to analyze the origin of rolling mill’s chatter that brings about light and shade streaks on the surface of steel strip from aspect of electromechanical coupling. The process and steps of modeling method was introduced by means of an example. The correctness of the model and the feasibility of the modeling method were verified in simulation experiment.
文摘The roller’s torsional self excited vibration caused by roller stick slip, and its influence on strip surface quality have been studied. Based on analysis of roller working surface stick slip, roller rotation dynamics equations have been established. The nonlinear sliding frictional resistance has been linearized, and dynamics equations have been solved according to the characteristics of stick and slip between roller and strip. The results show that: 1) with decreasing stick time t 1, torsional vibration wave pattern gradually transforms from serration into sinusoid, and frictional self excited vibration can cover all frequency components which are lower than that of free vibration; 2) stick time t 1 is directly proportional to torque increment Δ M R , and is inversely proportional to live shaft stiffness K and drive shaft rotational velocity ω ; 3) when slip time t 2 is basically steady, the longer the stick time, the larger the energy that system absorbs and discharges. As the slip time is a constant, it easily arouses strip surface shear impact and surface streaks.